首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of random copolymers of acrylamide and N‐vinylimidazole, poly(AAm‐co‐NVI), with various compositions were prepared using redox copolymerization. The influence of environmental conditions such as pH, temperature, and ionic strength on the swelling behavior of the copolymeric hydrogels was investigated. The hydrogels exhibited the highest equilibrium swelling in basic medium at high temperature. Equilibrium swelling decreased with rising ionic strength at pH 5.0. As pH increased, equilibrium swelling of the hydrogels increased at pH 11.0 and I = 0.20 M. Swelling kinetics of the hydrogels was found to be non‐Fickian at 25°C. The process tended to be Fickian at higher pH and temperature. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1783–1788, 2005  相似文献   

2.
Extraction or concentration with temperature‐sensitive hydrogels is a novel separation technology. In this study, N‐isopropylacrylamide (NIPA) was synthesized by acrylonitrile and isopropanol. Poly(N‐isopropylacrylamide) (PNIPA) and copolymer of NIPA and 2‐acrylamide‐2‐methylpropane sulfonate [P(NIPA‐co‐AMPS)] hydrogels were prepared by radiation polymerization. Dependence of their swelling behavior on temperature was studied. Effects of radiation dose on polymerization, feed composition on thermoresponse, electrolyte on relative swelling ratio, and swelling and deswelling kinetics were investigated. The experimental results showed that P(NIPA‐co‐AMPS) hydrogels with low content of AMPS/NIPA (1–5 %), prepared at a radiation dose‐rate of 1 kGy/h and total dose of 30–40 kGy, could enhance the swelling ratio of PNIPA hydrogels significantly and raise the phase‐transition temperatures. P(NIPA‐co‐AMPS) hydrogels produced under optimum conditions were used to concentrate aqueous bovine serum albumin (BSA, M = 69 000 g mol?1) solution. When aqueous BSA concentration was below 5 %, the separation efficiency was more than 80 % with low cost and low energy consumption. Copyright © 2005 Society of Chemical Industry  相似文献   

3.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) (PVA) and poly(acrylamide‐co‐sodium methacrylate) poly(AAm‐co‐SMA) were prepared by the semi IPN method. These IPN hydrogels were prepared by polymerizing aqueous solution of acrylamide and sodium methacrylate, using ammonium persulphate/N,N,N1,N1‐tetramethylethylenediamine (APS/TMEDA) initiating system and N,N1‐methylene‐bisacrylamide (MBA) as a crosslinker in the presence of a host polymer, poly(vinyl alcohol). The influence of reaction conditions, such as the concentration of PVA, sodium methacrylate, crosslinker, initiator, and reaction temperature, on the swelling behavior of these IPNs was investigated in detail. The results showed that the IPN hydrogels exhibited different swelling behavior as the reaction conditions varied. To verify the structural difference in the IPN hydrogels, scanning electron microscopy (SEM) was used to identify the morphological changes in the IPN as the concentration of crosslinker varied. In addition to MBA, two other crosslinkers were also employed in the preparation of IPNs to illustrate the difference in their swelling phenomena. The swelling kinetics, equilibrium water content, and water transport mechanism of all the IPN hydrogels were investigated. IPN hydrogels being ionic in nature, the swelling behavior was significantly affected by environmental conditions, such as temperature, ionic strength, and pH of the swelling medium. Further, their swelling behavior was also examined in different physiological bio‐fluids. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 302–314, 2005  相似文献   

4.
Hydrogels are hydrophilic polymers that swell to an equilibrium volume in the presence of water, preserving their shape. The dynamic swelling behavior of poly(N‐isopropylacrylamide‐coN,N‐dimethylacrylamide) [poly(NIPA‐co‐DMA)] copolymers at 37°C was investigated. It was observed that the swelling degree in the copolymers decreases with the N‐isopropylacrylamide content. In addition, the liberation mechanism was found to be Fickian. Diffusion coefficients according to Fick′s law as a function of the N‐isopropylacrylamide concentration and results of the release process are reported. The kinetics of cephazoline sodium release from poly(NIPA‐co‐DMA) hydrogels with different compositions was studied. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3433–3437, 2004  相似文献   

5.
BACKGROUND: A considerable amount of research has been focused on smart hydrogels that can respond to external environmental stimuli, especially temperature and pH. In this study, fast responsive thermo‐ and pH‐sensitive poly[(N,N‐diethylacrylamide)‐co‐(acrylic acid)] hydrogels were prepared by free radical copolymerization in aqueous solution using poly(ethylene glycol) (PEG) as a pore‐forming agent. RESULTS: Swelling studies showed that the hydrogels produced had both temperature and pH sensitivity. The deswelling kinetics at high temperature demonstrated that the shrinking rates were influenced by the addition of the pore‐forming agent and the amount of acrylic acid in the initial total monomers. The deswelling curves in low‐buffer solutions had two stages. Pulsatile swelling studies indicated that the PEG‐modified hydrogels were superior to the normal ones. These different swelling properties were further confirmed by the results of scanning electron microscopy. CONCLUSION: Such fast responsive thermo‐ and pH‐sensitive hydrogels are expected to be useful in biomedical fields for stimuli‐responsive drug delivery systems. Copyright © 2008 Society of Chemical Industry  相似文献   

6.
The adsorption of ammonium and nitrate by temperature‐stimulus‐responsive poly(N‐isopropylacrylamide) (NIPA) gel and poly(N‐isopropylacrylamide‐co‐chlorophyllin) (NIPA‐CH) gel in different states was investigated. Both the NIPA gel and NIPA‐CH gel could adsorb ammonium and nitrate in a swollen state (swollen gel) and a swelling state (swelling gel), and they adsorbed ammonium more than nitrate. When the gels were shrinking (shrinking gel), they could adsorb a little ammonium from solution, but when the gels were in a shrunken state (shrunken gel), they hardly adsorbed ammonium. The adsorption of both ammonium and nitrate increased for the swelling NIPA gel in comparison with the swollen gel. The NIPA‐CH gel was the opposite in this respect. The difference in the amounts of adsorption of ammonium and nitrate by the swollen and swelling NIPA‐CH gels was more significant than that of the NIPA gels. It was suggested that ions such as ammonium and nitrate could not diffuse into the gels freely. The adsorption of ammonium and nitrate was affected not only by the phase transitions of the gels but also by the electrical charges. The experimental results for the adsorption of ammonium and nitrate during the volume changes of the gels imply that if the gels are applied to the immobilization of microorganisms, they may improve mass transfer between the immobilization matrix and bulk liquid under cyclic temperature changes and promote reactions of the immobilized microorganisms, especially the nitrification of nitrifying bacteria immobilized by the NIPA‐CH gel. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2367–2372, 2005  相似文献   

7.
The pH‐sensitive swelling and release behaviors of the anionic P(MAA‐co‐EGMA) hydrogels were investigated as a biological on–off switch for the design of an intelligent drug delivery system triggered by external pH changes. There was a drastic change of the equilibrium weight swelling ratio of P(MAA‐co‐EGMA) hydrogels at a pH of around 5, which is the pKa of poly (methacrylic acid) (PMAA). At a pH below 5, the hydrogels were in a relatively collapsed state but at a pH higher than 5, the hydrogels swelled to a high degree. When the molecular weight of the pendent poly(ethylene glycol) (PEG) of the P(MAA‐co‐EGMA) increased, the swelling ratio decreased at a pH higher than 5. The pKa values of the P(MAA‐co‐EGMA) hydrogels moved to a higher pH range as the pendent PEG molecular weight increased. When the feed concentration of the crosslinker of the hydrogel increased the swelling ratio of the P(MAA‐co‐EGMA) hydrogels decreased at a pH higher than 5. In release experiments using Rhodamine B (Rh‐B) as a model solute, the P(MAA‐co‐EGMA) hydrogels showed a pH‐sensitive release behavior. At low pH (pH 4.0) a small amount of Rh‐B was released while at high pH (pH 6.0) a relatively large amount of Rh‐B was released from the hydrogels. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

8.
Poly[(dimethylaminoethyl methacrylate)‐co‐(acrylic acid)] [poly(DMAEMA‐co‐AAc)] hydrogels have been synthesized by UV‐induced copolymerization of dimethylaminoethyl methacrylate (DMAEMA) and acrylic acid monomer. The effects of pH and ionic strength on the swelling behaviour of poly(DMAEMA‐co‐AAc) hydrogels were investigated in detail. It was found that there is minimal equilibrium swelling ratio (ESR) for the hydrogels with the change of pH, and the pH at minimal ESR of the hydrogels was defined by the isoelectric points (IEP), similar to the situation with protein molecules. The IEP of the hydrogels shifted to higher values with increase in the DMAEMA content in the hydrogels. Antipolyelectrolyte behaviour of the hydrogels at a pH near the IEP was observed as well, and the ESR increased with increasing ionic strength. The study of swelling kinetics of the hydrogels showed that the swelling process was Fickian at the IEP and non‐Fickian when the pH deviated from the IEP. Copyright © 2003 Society of Chemical Industry  相似文献   

9.
A pH‐sensitive hydrogel [P(CE‐co‐DMAEMA‐co‐MEG)] was synthesized by the free‐radical crosslinking polymerization of N,N‐dimethylaminoethyl methacrylate (DMAEMA), poly(ethylene glycol) methyl ether methacrylate(MPEG‐Mac) and methoxyl poly(ethylene glycol)‐poly(caprolactone)‐methacryloyl methchloride (PCE‐Mac). The effects of pH and monomer content on swelling property, swelling and deswelling kinetics of the hydrogels were examined and hydrogel microstructures were investigated by SEM. Sodium salicylate was chosen as a model drug and the controlled‐release properties of hydrogels were pilot studied. The results indicated that the swelling ratios of the gels in stimulated gastric fluids (SGF, pH = 1.4) were higher than those in stimulated intestinal fluids (SIF, pH = 7.4), and followed a non‐Fickian and a Fickian diffusion mechanism, respectively. In vitro release studies showed that its release rate depends on different swelling of the network as a function of the environmental pH and DMAEMA content. SEM micrographs showed homogenous pore structure of the hydrogel with open pores at pH 1.4. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40737.  相似文献   

10.
BACKGROUND: Stimuli‐responsive hydrogels are typically obtained from non‐biodegradable monomers. The use of biodegradable crosslinkers can overcome this limitation. In this context, the main aim of this work was to use modified polycaprolactone as a crosslinker in the preparation of pH‐responsive hydrogels based on N‐isopropylacrylamide and methacrylic acid to give poly[(N‐isopropylacrylamide)‐co‐(methacrylic acid)] (P(N‐iPAAm‐co‐MAA)). RESULTS: Poly(caprolactone) dimethacrylate macromonomer was synthesized and successfully employed as crosslinker with various ratios in the synthesis of well‐known pH‐responsive hydrogels of P(N‐iPAAm‐co‐MAA). The swelling properties of these degradable hydrogels were investigated. They practically do not swell at pH = 2, but exhibit a very high swelling capacity in distilled water and in solutions of pH = 7. In addition, degradation studies at pH = 12 showed that the hydrolysis of the ester groups in the polycaprolactone chains produces, after a relatively short time, the total solubilization of the polymer chains. CONCLUSION: The hydrogels under study have certain characteristics that could make them good candidates for use as matrices in controlled drug delivery. On the one hand, they do not swell in acid pH solution (stomach conditions) but they swell extensively at neutral pH. On the other hand, they became rapidly water soluble following degradation. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
Novel pH‐sensitive chitosan‐poly(acrylamide‐co‐itaconic acid) hydrogels were prepared by free radical copolymerization of acrylamide and itaconic acid (IA) in chitosan solution. The hydrogels were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry and the swelling ratios of the hydrogels in water (pH 6.8) and pH 1.2. The influence of composition on the thermal properties of the hydrogels was assessed. The glass transition temperatures of the samples increased with IA content, ranging from 110 to 136 °C. Swelling of the hydrogels was found to obey second‐order kinetics with respect to the remnant swelling, indicating that diffusion is controlled by the relaxation of chains. The equilibrium swelling degree was strongly dependent on pH and composition. At both pH values the highest water uptake was obtained for the IA‐free sample M1. From the equilibrium swelling results the average molar mass between crosslinks, Mc, and the crosslink density of the chitosan‐poly(acrylamide‐co‐itaconic acid) samples were calculated. The results evidenced the reinforcing effect of IA on the hydrogel structure. It is concluded that these highly swellable pH‐sensitive hydrogels can be useful for applications in biomedicine and pharmacy. © 2013 Society of Chemical Industry  相似文献   

12.
A series of novel nanocomposite hydrogels were prepared by a cross‐linking copolymerization method. Structural and morphological characterizations of the nanocomposite hydrogels revealed that a good compatibility exists between poly(acrylamide‐co‐sodium methacrylate) [P(AM‐co‐SMA)] and carboxyl‐functionalized carbon nanotubes (MWNTs–COOH). The P(AM‐co‐SMA)/MWNTs–COOH nanocomposite hydrogels with a suitable MWNTs–COOH loading exhibited better swelling capability, higher pH sensitivity, good reversibility, and repeatability, and rapid response to external pH stimuli, compared with the P(AM‐co‐SMA). The compression mechanical tests revealed that the nanocomposite hydrogel displayed excellent compressive strengths and elastic mechanical properties, with higher ultimate compressive stress, and meanwhile still retain a good recoverable strain in the presence of MWNTs–COOH. These excellent properties may primarily be attributed to effectively dispersing of a suitable MWNTs–COOH loading into the matrix of the polymers and formation of additional hydrogen bonds. The nanocomposite hydrogels were expected to find applications in drug controlled release and issue engineering. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

13.
An approach to synthesizing photopatternable enzymatic degradable dextran hydrogel is presented. The glycidyl methacrylate derivatized dextran (Dex‐GMA) was first prepared by reacting dextran with glycidyl methacrylate at 45°C with grafting efficiency of 10%. The degree of substitution (DS) was confirmed by 1H‐NMR. Next, Dex‐GMA hydrogels were prepared by crosslinking in the presence of a crosslinker: N,N′‐ methylene‐bisacrylamide (NMBA), and a photoinitiator: 2,2′‐dimethoxy‐2‐phenyl acetophenone (DMPA) in dimethyl sulfoxide (DMSO) solution. Further, the Dex‐GMA hydrogels were photopatterned using liquid‐phase photopolymerization (LP3) technique. The structure size ranged from 5 mm to 300 μm and three different shapes of structures‐ ‐ —round, square, and star‐ ‐ —were demonstrated. The patterned Dex‐GMA hydrogel structures not only exhibited mechanical robustness but also biodegradability. The dextranase‐catalyzed degradation of Dex‐GMA hydrogels with different DS was investigated at 37°C. The morphology of the degraded Dex‐GMA hydrogels determined by SEM revealed the degree of enzymatic degradation due to dextranase. The Dex‐GMA hydrogel was fully degraded by dextranase with concentration of 2 U/ml in 5 days. The Dex‐GMA hydrogel also showed the ability to be readily integrated with microfluidics. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

14.
Poly(N‐isopropylacrylamide‐co‐sodium acrylate) [poly(NIPAM‐co‐SA)] hydrogels were modified with three different kind of surfactants (cationic, anionic, and nonionic) to study the effect on the swelling properties. The structural variation of the surfactant‐modified hydrogels was investigated in detail. The interaction between the surfactants and the hydrogel varies and strictly depends on the surfactant type. The variation in thermal stability of the modified surfactant hydrogels was investigated and compared with unmodified hydrogel. Further, the hydrogel swelling/diffusion kinetic parameters were investigated and diffusion of water into hydrogel was found to be of the non‐Fickian transport mechanism. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3423–3430, 2007  相似文献   

15.
Octavinyl polyhedral oligomeric silsesquioxane (OVPS) is used as the crosslinker instead of N,N′‐methylenebisacrylamide (BIS) to copolymerize with 2‐(dimethylamino)ethyl methacrylate (DMAEMA) or DMAEMA and N‐isopropylacrylamide (NIPAM) to prepare hybrid hydrogels: P(OVPS‐co‐DMAEMA) and P(OVPS‐co‐DMAEMA‐co‐NIPAM). The prepared hydrogels are transparent and show dual response to temperature and pH. The hydrogels were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis and tensile tests. Their mechanical properties, swelling ratio, deswelling and reswelling behaviors as well as drug release properties were investigated. The results indicate that OVPS can be incorporated into polymer networks in proportion to feed ratios. The P(OVPS‐co‐DMAEMA) hydrogel exhibits more homogeneous interior structure, higher swelling ratio and faster response than the conventional hydrogel prepared with BIS. Moreover, the incorporation of OVPS enhances the compression and tensile properties of the hydrogels. The feed ratios of OVPS and NIPAM have a great effect on volume phase transition temperature, thermal sensitivity, swelling behavior, mechanical properties and drug release properties of the hybrid hydrogels. The prepared dual‐responsive OVPS‐containing hydrogels are expected to be used as biomedical materials in drug release and tissue engineering. © 2014 Society of Chemical Industry  相似文献   

16.
pH‐ and temperature‐responsive interpenetrating polymer network (IPN) hydrogels based on soy protein and poly(N‐isopropylacrylamide‐co‐sodium acrylate) were successfully prepared. The structure and properties of the hydrogels were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, and thermogravimetric analyzer. The equilibrium and dynamic swelling/deswelling behaviors and the drug release properties of the hydrogels responding to pH and/or temperature were also studied in detail. The hydrogels have the porous honeycomb structures, good miscibility and thermal stability, and good pH‐ and temperature‐responsivity. The volume phase transition temperature of the hydrogels is ca. 40°C. Changing the soy protein or crosslinker content could be used to control the swelling behavior and water retention, and the hydrogels have the fastest deswelling rate in pH 1.2 buffer solutions at 45°C. Bovine serum albumin release from the hydrogels has the good pH and temperature dependence. The results show that the proposed IPN hydrogels may have potential applications in the field of biomedical materials such as in drug delivery systems. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39781.  相似文献   

17.
Thermoresponsive hydrogels based on N‐isopropylacrylamide and N‐vinylimidazole were synthesized, and their swelling–deswelling behavior was studied as a function of the total monomer concentration. For copolymeric structures with better thermoresponsive properties with respect to poly(N‐isopropylacrylamide‐coN‐vinylimidazole) hydrogels, these hydrogels were protonated with HCl and HNO3, and the copolymer behaviors were compared with those of the unprotonated hydrogels. The temperature was changed from 4 to 70°C at fixed pHs and total ionic strengths. The equilibrium swelling ratio, dynamic swelling ratio, and dynamic deswelling ratio were evaluated for all the hydrogels. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1619–1624, 2004  相似文献   

18.
The gloss properties of the polycarbonate (PC)/poly(methyl methacrylate‐acrylonitrile‐butadiene‐styrene) (MABS) blend with styrene‐acrylonitrile‐co‐glycidyl methacrylate (SAN‐co‐GMA) as a compatibilizing agent were investigated. For the PC/poly(MABS)/SAN‐co‐GMA (65/15/20, wt %) blend surface, the reduction of gloss level was observed most significantly when the GMA content was 0.1 wt %, compared with the blends with 0.05 wt % GMA or without GMA content. The gloss level of the PC/poly(MABS)/SAN‐co‐GMA (0.1 wt % GMA) blend surface was observed to be 35, which showed 65% lower than the PC/poly(MABS)/SAN‐co‐GMA blend without GMA content. The gloss reduction was most probably caused by the insoluble fractions of the PC/poly(MABS)/SAN‐co‐GMA blend that were formed by the reaction between the carboxylic acid group in poly(MABS) and epoxy group in SAN‐co‐GMA. The results of optical and transmission electron microscope analysis, spectroscopy study, and rheological properties supported the formation of insoluble structure of the PC/poly(MABS)/SAN‐co‐GMA blend when the GMA content was 0.1 wt %. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46450.  相似文献   

19.
Temperature‐sensitive poly[(2‐diethylaminoethyl methacrylate)‐co‐(N,N‐dimethylacrylamide)] [P(DEAEMA‐co‐DMAAm)] hydrogels with five different DMAAm contents were synthesized with and without the addition of sodium carbonate as porosity generator. The synthesized hydrogels were characterized with dry gel density measurements, scanning electron microscopy observation and the determination of swelling ratio. The influence of the pore‐forming agent and content of DMAAm on swelling ratio and network parameters such as polymer–solvent interaction parameter (χ), average molecular mass between crosslinks (M?c) and mesh size (ζ) of the cryogels are reported and discussed. The swelling and deswelling rates of the porous hydrogels are much faster than for the same type of hydrogels prepared via conventional methods. At a temperature below the volume phase transition temperature, the macroporous hydrogels also absorbed larger amounts water compared to that of conventional hydrogels and showed obviously higher equilibrated swelling ratios in aqueous medium. In particular, the unique macroporous structure provided numerous water channels for water diffusion in or out of the matrix and, therefore, an improved response rate to the external temperature changes during the deswelling and swelling processes. These properties are attributed to the macroporous and regularly arranged network of the porous hydrogels. Scanning electron micrographs reveal that the macroporous network structure of the hydrogels can be adjusted by applying porosity generation methods during the polymerization reaction. Copyright © 2007 Society of Chemical Industry  相似文献   

20.
Environmentally sensitive hydrogels responsive to various stimuli such as temperature, pH, ionic strength of the medium and the solvent were prepared by using N‐isopropyl acrylamide (NIPAM), acrylamide (AAm) and monomers that have various number of carboxylic acid (XA) functionality using N,N′‐methylene bisacrylamide (Bis) as crosslinker. Hydrogels were prepared via free radical polymerization reaction in aqueous solution. P(NIPAAm‐co‐AAm) and p(NIPAAm‐co‐AAm)/XA hydrogels that contain monoprotic crotonic acid (CA) exhibit a lover critical solution temperature (LCST) at 28°C, whereas p(NIPAAm‐co‐AAm)/IA (IA:itaconic acid), and P(NIPAAm‐co‐AAm)/ACA (ACA:acotonic acid) hydrogels exhibit a lover critical solution temperature at 30.7°C and 34.4°C, respectively. Spectroscopic and thermal analyses were performed for the structural and thermal characterizations of the prepared hydrogel. The swelling experiments as equilibrium swelling percentages by gravimetrically were carried out in different solvents, at different solutions temperature, pH, and ionic strengths to determine their effects on swelling characteristic of hydrogels. POLYM. ENG. SCI., 55:843–851, 2015. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号