首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we identified recently subsiding areas in Jharia Coalfield, Jharkhand, India from the shorter temporal baseline Radarsat-2 C-band interferometric synthetic aperture radar (InSAR) data pairs of 2012. Although shorter wavelength C-band differential InSAR (DInSAR) is more sensitive to slow deformation and better suited for higher precision land subsidence measurement, the dynamic and adverse land cover in mining areas and resulting temporal decorrelation problem poses a serious problem for DInSAR observation in mining areas. We used smaller temporal baseline data pairs and adopted InSAR coherence-guided incremental filtering with smaller moving windows to highlight the deformation fringes over temporal decorrelation noise. We identified the deformation fringes and validated them based on ground information to prepare the land subsidence map of the coalfield in 2012. Several new, previously unreported subsidence areas were detected in the present study with a total subsiding area of 6.9 km2. The recent incidence of roof collapse on 15 November 2014 at Angar Patra village in Katras region of the coalfield where 45 houses collapsed and 10 people were injured is situated in a highly subsiding vulnerable area as obtained from the present study. Due to spatial discontinuities of InSAR coherence, DInSAR phase unwrapping for the entire study area in one go did not appear feasible. To avoid this problem, we performed DInSAR processing in smaller spatial subsets and unwrapping of the subset interferograms by a ‘minimum cost flow’ algorithm. Subsequently, we plotted unwrapped phase profiles across the deformation fringes and retrieved the maximum deformation phase with respect to background phase and translated them into radar line of sight (LOS) displacement rates. For obtaining the average subsidence rates, we adopted InSAR coherence-weighted LOS displacement rates taking into account the contribution of each data pair as a function of DInSAR phase quality of the fringe areas. Ground-based subsidence measurements by precision levelling were conducted in four test sites that had been undergoing active underground mining during the observation period. We compared space-borne DInSAR-based subsidence rates obtained by the adopted technique with precision levelling measurements. Overall, the results are found to agree well. In the four test sites with gentle to flat topography, land subsidence occurs at slow to moderate rates due to compression of in-filled material (resulting from sand stowing in underground mining), without any evidence of roof collapse. In such cases, the horizontal displacement component is less significant, and overall surface displacement occurs essentially in the vertical direction. However, we assessed the nature of subtle horizontal strain to infer relative shrinkage or dilation of the land surface which could be additive or subtractive to vertical displacement in DInSAR-based LOS displacement.  相似文献   

2.
This work attempts to map recent land subsidence on the Sibari plain in Calabria region (Southern Italy), by exploiting vertical velocity values and time series of persistent scatterer interferometry (PSI) synthetic aperture radar (SAR) data acquired in the period 1992–2011 by different satellite systems.

After reviewing other sources and rates of subsidence recorded by previous works since the beginning of the Holocene, this paper presents the spatial distribution of the current settlement rates showing that subsidence is due to the compressible alluvial sediments of the plain, but that in recent times it is mostly due also to human activities. In fact, according to the most recent monitoring period (2009–2011), downward motion rates are recorded as being only localized within site-specific industrial areas, such as the ‘Sibari Lakes’ nautical and residential centre and Corigliano Calabro Industrial Zone. The temporal analysis of persistent scatterers (PS) time series, carried out through the PS-Time program, adds further useful information, finally highlighting that, in these areas, subsidence has positively decreased or stabilized from the second semester of the year 2010.

This work shows that PSI measurements provide support in the quantitative evaluation of known subsidence process and that the analysis of time series allows effective detection of the temporal evolution trends of the phenomenon, such as changes or deceleration in displacement rates, not otherwise visible by merely considering the average velocity.  相似文献   

3.
Characterization and causes of land subsidence in Beijing,China   总被引:1,自引:0,他引:1  
Long-term overexploitation of groundwater is the primary factor causing regional land subsidence in the Beijing plain area, China. Currently, large subsidence funnels exist, one each in southern and northern Beijing. We adopted the multi-temporal interferometric synthetic aperture radar (MT-InSAR) method, incorporating both persistent scatterer (PS) and small baseline (SB) approaches on 47 Envisat Advanced Synthetic Aperture Radar (ASAR) single look complex (SLC) images to map land subsidence in the Beijing plain area. The temporal and spatial variations of land subsidence and its seasonal variation were explained by the MT-InSAR results. Then, the InSAR results were combined with the dynamic monitoring of groundwater level, extensometer measurements, and hydrogeological data; the characterization and causes of land subsidence were analysed with Geographic Information System (GIS) spatial analysis methods. The results show the following. 1) Land subsidence developed rapidly in the Beijing plain area from 2003 to 2010, with obviously uneven settlement; settlement rates exceeded 100 mm year?1 in some areas. Seasonal variation in settlement rates may be affected by changes in the precipitation rates and the exploitation of groundwater. 2) The contribution of different aquifer systems to land subsidence varies. The variation in the groundwater level in the second confined aquifer, at a depth of 100–180 m, has the greatest impact on land subsidence. 3) The settlement is centred in the lower part of the Wenyu–Chaobai and Yongding alluvial fan areas, where the compressible layer is more than 100 m thick. Meanwhile, land subsidence forms a structural feature with larger differences in the deformation gradient on both sides of faults.  相似文献   

4.
We investigate the surface deformation of the eastern California area that includes Long Valley caldera and Mono Basin. We apply the SAR Interferometry (InSAR) algorithm referred to as Small BAseline Subset (SBAS) approach that allows us to generate mean deformation velocity maps and displacement time series for the investigated area. The results presented in this work represent an advancement of previous InSAR studies of the area that are mostly focused on the deformation affecting the caldera. In particular, the proposed analysis is based on 21 SAR data acquired by the ERS-1/2 sensors during the 1992-2000 time interval, and demonstrates the capability of the SBAS procedure to identify and analyze displacement patterns at different spatial scales for the overall area spanning approximately 5000 km2. Two previously unreported localized deformation effects have been detected at Paoha Island, located within the Mono Lake, and in the McGee Creek area within the Sierra Nevada mountains, a zone to the south of the Long Valley caldera. In addition a spatially extended uplift effect, which strongly affects the caldera, has been identified and analyzed in detail. The InSAR results clearly show that the displacement phenomena affecting the Long Valley caldera have a maximum in correspondence of the resurgent dome and are characterized by the sequence of three different effects: a 1992-1997 uplift background, a 1997-1998 unrest phenomenon and a 1998-2000 subsidence phase. Moreover, the analysis of the retrieved displacement time series allows us to map the extent of the zone with a temporal deformation behavior highly correlated with the detected three-phases deformation pattern: background uplift-unrest-subsidence. We show that the mapped area clearly extends outside the northern part of the caldera slopes; accordingly, we suggest that future inversion models take this new evidence into account. The final discussion is dedicated to a comparison between the retrieved InSAR measurements and a set of GPS and leveling data, confirming the validity of the results achieved through the SBAS-InSAR analysis.  相似文献   

5.
Tianjin, China, has been suggested to have serious ground subsidence due to excessive extraction of groundwater. It is essential to monitor this subsidence, which has potential hazards and risks. Time series InSAR (TS-InSAR), such as small baselines subset (SBAS), is a powerful tool that can monitor ground deformation with high accuracy and at high spatial resolution over a long time interval. However, the high computational complexity may exceed computer memory limit when high-spatial resolution SAR (such as TerraSAR-X, TSX) images are used. In this article, the multi-look approach is introduced to the SBAS tool from StaMPS/MTI (Stanford method for persistent scatter/multi-temporal InSAR) in order to balance the spatial resolution and subsidence information in detection. The looks used for multi-looking are first fixed in terms of the accuracy of deformation and the density of coherent points. Then, the recent subsidence in Tianjin is extracted using multi-looking SBAS based on 48 TSX images acquired from 2009 to 2013. The results are validated by levelling measurements with a root mean square error (RMSE) of 4.7 mm year–1, which demonstrates that SBAS analysis can effectively monitor deformation based on multi-looking TSX acquisitions in the area under investigation. Besides, the results also show that Tianjin has been suffering from subsidence during this period, and there were two separate large subsidence basins located in this study area with more than 500 mm cumulative subsidence. Moreover, the subsidence rate increased after December 2010 in Tianjin.  相似文献   

6.
We have exploited the capability of the differential synthetic aperture radar (SAR) interferometry (DInSAR) technique, referred to as Small BAseline Subset (SBAS) approach, to analyse surface deformation at two distinct spatial scales: a low resolution, large scale, and a fine resolution, local scale. At the large scale, the technique investigates DInSAR data with a ground resolution of the order of 100 m×100 m and leads to generate mean deformation velocity maps and associated time series for areas extending to some thousands of square kilometres. At the local scale, the technique exploits the SAR images at full spatial resolution (typically of the order of 5 m×20 m), detecting and analysing localized deformation phenomena. The study is focused on the city of Rome, Italy, and we used the ERS‐1/2 satellite radar data relevant to the 1995–2000 time period. The presented results demonstrate the capability of the SBAS approach to retrieve, from the low‐resolution DInSAR data, large‐scale deformation information leading to identify several sites affected by significant displacements. Our analysis permitted us to conclude that a major contribution to the detected displacements is due to the consolidation of the alluvial soils present in the area, mostly enforced by the buildings' overload. Furthermore, in a selected area, a detailed analysis was carried out by exploiting the full resolution DInSAR data. In this case we investigated deformation phenomena at the scale of single buildings. As key result we showed that differential displacements of few mm a?1, affecting single man‐made structures or building complexes, could be detected, thus allowing to identify sites that may potentially be involved in critical situations.  相似文献   

7.
With the exploitation of coal resources, ground surface subsidence continues to occur in mining areas, destroying the ecological environment and significantly affecting the daily productivity and life of humans. The differential synthetic aperture radar interferometry (D-InSAR) technique is widely used to monitor ground surface deformation because of its unique advantages such as high accuracy and wide coverage. However, conventional D-InSAR technology provides only one-dimensional (1D) displacement monitoring along the radar line of sight (LOS). This article proposes a method based on an analysis of the mining subsidence law for true three-dimensional (3D) displacement monitoring by combining D-InSAR and a subsidence prediction model based on the probability integral method. In this approach, 1D displacement, obtained using D-InSAR, is then combined with the prediction model to obtain the 3D displacement of ground surface target points. Here, 3D displacement curves were obtained for the Fengfeng mining area (China) using RadarSat-2 images obtained on 9 January and 2 February 2011. True ground surface displacement was measured simultaneously by levelling when the 152under31 s working face was being exploited in Jiulong mine. Vertical displacement and inclined deformation calculated using the proposed method were compared with levelling survey data and the results showed average differences of 3.2 mm and 0.1 mm m?1, respectively; the calculated maximum displacement in the east–west and south–north directions were 106 and 73 mm, respectively. The spatial distribution of the displacements was in accordance with the mining subsidence law. Thus, the new method can retrieve highly accurate 3D displacements caused by mining subsidence.  相似文献   

8.
In connection with the detection of various spatial- and temporal-scale ground settlements, an integrated persistent scatterer interferometry (PSI) approach is discussed using multi-source, multi-temporal, and multi-resolution synthetic aperture radar (SAR) data. Based on the comprehensive analysis of characteristics of available radar sensors, two remote-sensing SAR data sets were selected: 1 m resolution X-band TerraSAR-X and 10 m resolution L-band Advanced Land Observing Satellite (ALOS) phased array L-band SAR. ‘Tianjin Binhai New Area’ has become one of the most important economic centres in China, and one of its fast-developing urban areas, Tanggu, was selected as the study area. PSI processing was conducted on both data sets. Substantial validation was performed for PSI results from both data sources using levelling measurement. The overall good agreement confirmed the ground deformation maps derived from both data sets. Integration of PSI results appears to be a potentially significant contribution to solving the problems related to common spatial and temporal gaps when using single-type data sets. Application of both data sets revealed the capability of integrated PSIs to measure ground deformation with strong temporal and spatial variation, thereby improving the interpretation of ground deformation characteristics which increases the confidence of hazard assessment and provides some insight into complex underlying mechanisms.  相似文献   

9.
城市的沉降监测有利于了解区域实时高程,可为地质灾害与防护部门提供数据依据,避免因高程损失而带来的地质灾害。基于2016年1月至2017年12月共22景Sentinel-1A干涉宽幅模式影像数据,利用永久散射体合成孔径雷达干涉测量技术以及合成孔径雷达差分干涉测量技术进行芜湖市地表形变监测,并分析研究区地面沉降的时空分布特征。空间上,阐述芜湖市地面沉降的整体格局,再以道路为专题,分析了道路的沉降分布格局。时间上,以时间为基线,逐月分析地面沉降部分在年内的具体变化。结果表明:空间上,芜湖市地面沉降主要集中在长江以东的范围,呈现出由西向东逐渐增加的趋势,长江以西呈现零星漏斗式沉降分布,其中,沉降累积量也与道路的密度与建设相关,道路汇集区与修建区域的沉降累积量较大;时间上,研究区整体沉降量各月变化较均匀,其中,沉降量变化范围在6月最大,10月与11月最小。  相似文献   

10.
城市的沉降监测有利于了解区域实时高程,可为地质灾害与防护部门提供数据依据,避免因高程损失而带来的地质灾害。基于2016年1月至2017年12月共22景Sentinel-1A干涉宽幅模式影像数据,利用永久散射体合成孔径雷达干涉测量技术以及合成孔径雷达差分干涉测量技术进行芜湖市地表形变监测,并分析研究区地面沉降的时空分布特征。空间上,阐述芜湖市地面沉降的整体格局,再以道路为专题,分析了道路的沉降分布格局。时间上,以时间为基线,逐月分析地面沉降部分在年内的具体变化。结果表明:空间上,芜湖市地面沉降主要集中在长江以东的范围,呈现出由西向东逐渐增加的趋势,长江以西呈现零星漏斗式沉降分布,其中,沉降累积量也与道路的密度与建设相关,道路汇集区与修建区域的沉降累积量较大;时间上,研究区整体沉降量各月变化较均匀,其中,沉降量变化范围在6月最大,10月与11月最小。  相似文献   

11.
In this article, an advanced approach for land deformation monitoring using synthetic aperture radar (SAR) interferometry combined with polarimetric information is presented. The linear and nonlinear components of the deformation, the error of the digital elevation model (DEM) and the atmospheric artefacts can be achieved by a coherent target (CT)-neighbourhood networking approach. In order to detect recent land deformation in Shanghai, China, 12 ENVISAT advanced synthetic aperture radar (ASAR) alternating polarization images acquired from January 2006 to August 2008 are employed for deformation analysis. Over a 2.5-year period, two deformation velocity fields from HH and VV modes over Shanghai are derived using the CT-neighbourhood networking SAR interferometry (InSAR), then integrated into a final deformation map by a fusion scheme. It is found that the annual subsidence rates in the study area range from??20 to 10 mm year?1 and the average subsidence rate in the downtown area reaches??7.5 mm year?1, which is consistent with the local government statistics published in 2007.  相似文献   

12.
On 7 September 1999 a magnitude MW = 5.9 earthquake occurred in the Athens area of Greece producing a subsidence of 6–7 cm detected by radar interferometry. This study introduces a processing technique, which produces a clear deformation pattern of the earthquake, mostly released from artefacts due to orbital effects, unwrapping cycle slipping errors and atmospherics disturbances. A set of 17 ERS‐1 and ERS‐2 SAR images acquired between December 1997 and January 2001 has been used. The contribution of each artefact to the interferograms was calculated, both in the frequency and spatial domains.  相似文献   

13.
ABSTRACT

River deltas are very complex environments vulnerable to flooding. Most of the world’s deltas are facing the immediate threat of land subsidence that jeopardizes the safety of millions of people worldwide. In Italy, the Po River Delta (PRD) (Northeast Italy) is an area historically affected by high rate of subsidence due to natural and anthropic factors. Even if the subsidence rates remarkably reduced during the last three decades, this process continues to be alarming in particular in low-lying sectors and along the coastline, where the loss of elevation, combined with the sea-level rise, increases the risk related to flooding. In this study, we monitored the subsidence affecting the entire PRD area with advanced differential interferometric synthetic aperture radar (A-DInSAR) techniques applied to three C-band SAR data sets acquired by the European Remote Sensing satellites, Environmental Satellite, and Sentinel-1A satellite in the last 25 years (from 1992 to 2017). The results of the interferometric processing, consisting of both mean velocity and displacement time series along the satellite line of sight, validated by comparison with levelling and global positioning system measurements, show increasing subsidence moving from the inland to the coastline, with maximum deformation velocities, for the most recent data, in the order of ?30 mm year?1. In particular, many embankments near the coastal area are affected by high values of subsidence, which increase the flooding hazard of the entire deltaic territory. This work shows the importance of adopting A-DInSAR techniques to update the knowledge of the extent and rates of deformation of subsiding areas in low-lying territories such as river deltas. The outputs of such monitoring can be of primary importance for the future protection of the territory and the flooding risk mitigation.  相似文献   

14.
城市地面沉降监测是保障城市安全建设和健康发展的重要手段之一,而传统的沉降监测方法无法大尺度反映地面形变信息。针对近几年天津地区出现大面积沉降现象,利用Sentinel-1A数据基于永久散射体干涉测量技术开展城区大范围沉降监测研究并分析了地面沉降原因。结果表明:近年来天津地区多处出现地面沉降,严重沉降区集中天津的武清区、北辰区以及郊区乡镇结合区域的王庆坨镇、胜芳镇、左各庄镇、静海镇以及大寺镇,其最大沉降漏斗位于王庆坨镇,沉降速率为-63.2 mm/a。经分析发现天津地面沉降与地下水过度开采、大型工业区的迁移和建设以及活动断裂带地质活动有关。  相似文献   

15.
Based on C-band SAR data of Sentinel-1A satellite,two-pass Differential Interferometric Synthetic Aperture radar (D-InSAR) method was applied for analyzing the ground displacement due to the August 8,2017 Jiuzhaigou MS 7.0 earthquake shock.It obtained the study area coseismic deformation field.The interference results show that the earthquake caused obvious surface deformation,and the maximum uplift in the scenic area reached 12.6 cm,and the maximum settlement was 9.8 cm.The results show that the C-band radar data of Sentinel-1A satellite is very suitable for the detection of D-InSAR deformation in areas with dense vegetation and complex terrain.The ground deformation information obtained by D-InSAR technology can be used to analyze and discuss the scope of earthquake disaster and the mechanism of earthquake.The important status of D-InSAR technology in the field of large scale surface deformation detection and geoscience research are further clarified.  相似文献   

16.
城市地面沉降监测是保障城市安全建设和健康发展的重要手段之一,而传统的沉降监测方法无法大尺度反映地面形变信息。针对近几年天津地区出现大面积沉降现象,利用Sentinel-1A数据基于永久散射体干涉测量技术开展城区大范围沉降监测研究并分析了地面沉降原因。结果表明:近年来天津地区多处出现地面沉降,严重沉降区集中天津的武清区、北辰区以及郊区乡镇结合区域的王庆坨镇、胜芳镇、左各庄镇、静海镇以及大寺镇,其最大沉降漏斗位于王庆坨镇,沉降速率为-63.2 mm/a。经分析发现天津地面沉降与地下水过度开采、大型工业区的迁移和建设以及活动断裂带地质活动有关。  相似文献   

17.
Over exploitation of groundwater in Changzhou city, China can cause land deformation, which in turn proves detrimental to the urban infrastructure. In this study, multi-band synthetic aperture radar (SAR) data sets (C-band Envisat ASAR, L-band ALOS PALSAR, and X-band COSMO-SkyMed) acquired from 2006 to 2012 were analysed using the synthetic aperture radar (SAR) interferometry (InSAR) time-series method to investigate the relationship between spatial–temporal distribution of land deformation and groundwater exploitation. Annual deformation rate inferred from multi-band interferograms ranges from ?58 to 24 mm year?1. Levelling-survey data were used to validate the multi-band InSAR measurements. The results showed that these two types of measurements were generally in agreement. Correlating groundwater-table and multi-band InSAR measurements at six groundwater-well stations showed that with the rise of the water table, the land rebounded. But in some areas with larger subsidence, continual subsidence was observed even though the water table rose after the prohibition of groundwater exploitation. This may have been caused by the hysteresis effect due to the consolidation of strata (especially for the creep deformation). Our study provides scientific evidence on the management of groundwater extraction and the assessment of land-subsidence hazards.  相似文献   

18.
The differential SAR Interferometry (DInSAR) technique has been applied to a test site near Vauvert (France) to detect and monitor ground deformation. This site corresponds to the location of an industrial exploitation of underground salt using the solution mining technique. An area of subsidence has been observed using in situ measurements. Despite conditions unfavorable for InSAR because of the vegetal cover, we show that radar remote sensing observations provide valuable information which substantially improves our knowledge of the phenomenon. An adaptive phase filtering process has been used to improve the coherence level. In particular, our study shows that the geometry of the subsidence bowl is different to that previously assumed using ground-based techniques only. The size of the subsidence bowl (8 km) is larger than expected. This information will be useful for further modeling of the deformation and to improve the coverage of the in situ measurement networks. It also shows that radar interferometry can be used for the long-term monitoring of such sites and to predict potential environmental issues.  相似文献   

19.
The surface displacement by seasonally freezing bulge and thawing subsidence are the main hazards for engineering construction in permafrost regions, especially for the Qinghai-Tibet railway. One of the main problems is how to monitor the frozen ground's displacement in the process of construction and protection of the Qinghai-Tibetan railway. The technology of Permanent Scatterers (PS) has been successfully used to detect the long-term subsidence at urban areas. For detecting the subsidence of the frozen earth on Qinghai-Tibet Plateau, this paper extended the capability of the technology of PS to investigate deformation phenomena in vegetated area. The paper analyses an interferometric phase model, and presents improved PS algorithms for separating different components in interferometric phase. The proposed technique is implemented using ENVISAT ASAR images to detect the deformation over permafrost region of Qinghai-Tibet Plateau. The results are in concordance with results provided by a traditional ground levelling, which encourages future development using the Permanent Scatterers method to analyse deformation of the frozen earth on Qinghai-Tibet Plateau.  相似文献   

20.
Campi Flegrei is an active volcanic district located along the Eastern Tyrrhenian continental margin, Italy, and is worldwide known for dramatic ground deformation phenomena (bradyseism) recorded over the last centuries. The purpose of this article is to present the annual rates of ground deformation fields (average velocity, average acceleration, and combined annual velocity/acceleration) at Campi Flegrei, during almost two decades (years 1993–2010). The research work was conducted based on a temporal analysis and advanced mapping of Persistent Scatterer Pair (PSP) data, obtained from interferometric processing of radar satellite European Remote Sensing-1/2 and Environmental Satellite (ENVISAT) scenes of the study area. Patterns and trends of annual PSP velocity have provided a reconstruction of the spatial and temporal variability of ground deformation in terms of uplift and/or subsidence along the satellite line of sight (LOS). The analysis of annual PSP velocity and acceleration has revealed an intense dynamics of the Campi Flegrei caldera collapse-resurgence system, testified by the high PSP velocity and acceleration values, as well as the significant changes in the rates of ground deformation through time. The main results of this research indicate that the largest ground deformation is localized within and around the structural border of the Campi Flegrei caldera and suggest a systematic recurrence of opposite trends (uplift vs. subsidence) in the ground deformation of the inner caldera region with respect to the surrounding areas throughout the analysed time period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号