首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Explosive growth of different type of wireless networks in the last decade has raised an issue of influence of electromagnetic fields originating from radio frequencies to human health. Thus, more and more researchers working on the solutions for the next generation wireless communication systems now have in mind the necessity of keeping the level of radiated power on the minimum level necessary for achieving the required performances. In this paper we analyze solutions for human exposure reduction in dual-hop Orthogonal Frequency Division Multiplexing (OFDM) based decode-and-forward (DF) relay systems, as this type of relay system is adopted for LTE-Advanced networks, also denoted as 4G. In our approach we seek for the solutions that keep the certain performance metric, i.e. system capacity in this analysis, on the same level like in baseline OFDM DF relay system, but attain exposure reduction from relay station (R) on downlink (DL). In one of the considered solutions, R station, having more than one antenna for DL communication, implements transmit antenna selection (TAS) on subcarrier basis, jointly with ordered subcarrier mapping (SCM). TAS solution assumes that on each subcarrier position, the transmit antenna having the best subcarrier channel transfer function is chosen. Ordered SCM is a technique where subcarriers from the first hop are mapped to corresponding subcarriers on the second hop in accordance to their instantaneous signal-to noise ratios. It is proven to be a mapping scheme that maximizes the achievable capacity in OFDM based DF relay systems, enabling bit error rate improvement at the same time. Besides this solution, we analyze the level of human exposure reduction in the cases where only SCM technique is implemented at R, as well as where only TAS is implemented. We have developed a simulation model for assessing the level of human exposure to EMF, with included real-case simulation parameters given in LTE-Advanced relay reference scenario. In this way, we have obtained and analyzed data on the level of human exposure reduction attained with the proposed solutions in indoor and outdoor environment, and for the different positions of end-users relative to R station.  相似文献   

2.
In this paper, we investigate the quality-of-service (QoS) driven subcarrier pairing and power allocation for two-hop decode-and-forward (DF) OFDM relay systems. By integrating the concept of effective capacity, our goal is to maximize the system throughput subject to a given delay-QoS constraint. Based on whether the destination can receive the signal transmitted by the source, we consider two scenarios, i.e. OFDM DF relay systems without diversity and OFDM DF relay systems with diversity, respectively. For OFDM DF relay systems without diversity, we demonstrate that the jointly optimal subcarrier pairing and power allocation can be implemented with two separate steps. For OFDM DF relay systems with diversity, we propose an iterative algorithm to achieve jointly optimal subcarrier pairing and power allocation. Furthermore, we find that the analytical results show different conclusions for the two types of OFDM relay systems. For OFDM relay systems without diversity, the optimal power allocation depend on not only the channel quality of subcarriers but also the delay QoS constraints, while the optimal subcarrier pairing just depends on the channel quality of subcarriers. For OFDM relay systems with diversity, both the optimal subcarrier pairing and power allocation depend on the channel quality of subcarriers and the delay QoS constraints. Simulation results show that our proposed scheme offers a superior performance over the existing schemes.  相似文献   

3.
韩序  马文峰  许魁  徐友云 《通信技术》2015,48(6):637-641
子载波抑制(SS)技术已被证明能够显著提高正交频分复用(OFDM)系统的误码率性能,因此引起了学术界的广泛关注。在双向OFDM中继网络(TWRN)中,由于两个源节点与中继之间的链路具有独立性,直接应用子载波抑制技术会造成两条链路的活跃子载波具有非对称性,从而导致大量子载波在中继节点无法实现网络编码。提出了一种联合子载波抑制与子载波配对(SP)的双向译码转发(DF)-物理层网络编码(PLNC)OFDM中继系统。该方法对中继两端链路的非对称活跃子载波进行配对,在配对的子载波上发送物理层网络编码信息。仿真结果表明,该方法显著改善了误码率性能,消除了原有的误码平台并且提高了系统的吞吐量性能。  相似文献   

4.
Energy savings in orthogonal frequency division multiplexing (OFDM) systems is an active research area. In order to achieve a solution, we propose a new cooperative relaying scheme operated on a per subcarrier basis. This scheme improves the bit error rate (BER) performance of the conventional signal‐to‐noise ratio (SNR)‐based selection relaying scheme by substituting SNR with symbol error probability (SEP) to evaluate the received signal quality at the relay more reliably. Since the cooperative relaying provides spatial diversity gain for each subcarrier, thus statistically enhancing the reliability of subcarriers at the destination, the total number of lost subcarriers due to deep fading is reduced. In other words, cooperative relaying can alleviate error symbols in a codeword so that the error correction capability of forward error correction codes can be fully exploited to improve the BER performance (or save transmission energy at a target BER). Monte‐Carlo simulations validate the proposed approach.  相似文献   

5.
In this paper, we investigate the quality‐of‐service (QoS) driven subcarrier pairing and power allocation for two‐hop amplify‐and‐forward OFDM relay systems. By integrating the concept of effective capacity, our goal is to maximize the system throughput subject to a given delay QoS constraint. We propose a jointly optimal subcarrier pairing and power allocation scheme, which can be implemented with two separate steps. First, pair the subcarriers over the source‐relay channel and relay‐destination channel by the descending order of the subcarriers’ channel gains. Second, by making use of the derived equivalent end‐to‐end channel gains of the subcarrier pairs, optimally allocate power over the subcarrier pairs, and then optimally partition the power of the subcarrier pairs between the source and the relay. The simulation results show that our proposed scheme can efficiently provide different levels of delay QoS guarantees, even if under stringent delay QoS constraints. The simulation results also verify that our proposed scheme shows significant superiorities over the other existing schemes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
We consider a two-hop relay link in which orthogonal frequency division multiplexing (OFDM) is used on both hops. Under a joint sum-power constraint, our aim is to allocate power over subcarriers on the two hops such that the instantaneous rate of the relay link is maximized. Ordered subcarrier pairing (OSP) has been proposed in the literature to further improve the relay link rate; however, the optimality of OSP has been proven only for equal power allocation and the proof of its optimality under optimal power allocation has not been available yet. In this letter, we will provide our proof which verifies that OSP is optimal for both amplify-and-forward (AF) and decode-and-forward (DF) relay links when optimal power allocation is applied.  相似文献   

7.
降低OFDM系统峰均功率比的差分回归法研究   总被引:1,自引:0,他引:1  
针对正交频分复用系统,提出一种利用的差分回归法降低峰均功率比.该方法先把信息伪随机化,在频域和时域上对OFDM符号进行处理.通过以时域为主、频域差分编码为补充,对采样值进行回归处理,来实现抑制峰均功率比的目的;此方法便于硬件电路实现,适用任何载波系统,对128载波系统,可以带来4dB的抑制效果,文中给出随机模拟、CCDF和系统性能BER仿真图.  相似文献   

8.
Acquisition and tracking are two crucial stages necessary to the carrier frequency synchronization in orthogonal frequency division multiplexing (OFDM) systems. In this letter, by employing the rotation property of OFDM data subcarriers, a simple time-frequency decision-feedback loop without the use of pilot subcarriers is proposed for the fine carrier frequency offset (CFO) tracking. Specifically, with proper loop parameters, a residual CFO less than 10% of the subcarrier spacing may be well tracked for quarternary phase-shift keying (QPSK) modulation in the presence of noise, while for systems using QPSK, 16-QAM, and 64-QAM modulation schemes, the bit-error rate (BER) performance very close to that of an offset-free system may be achieved in both additive white Gaussian noise (AWGN) and frequency selective fading channels. Moreover, a hardware implementation in a practical OFDM system is fulfilled which verifies the effectiveness of the proposed scheme.  相似文献   

9.
刁新颖 《电子科技》2013,26(5):146-148
研究了协作正交频分复用系统的中继方案,提出了OFDM协作分集系统中的子载波选择算法,根据子信道信息,在容量准则下,选择可以提高系统容量的子载波,以放大前传的方式转发源节点信息。仿真结果表明,在中继节点功率与源节点功率较低或中继节点靠近源或目的节点时,所有子载波都采用中继传输可降低系统容量;子载波选择算法可以改善系统容量,并且选择合适的中继节点发射功率和中继位置,可以显著提高系统容量,当中继节点位于源与目的节点中点时,系统容量最大。  相似文献   

10.
Accurate estimation of carrier frequency offset (CFO) is an important requirement in orthogonal frequency-division multiplexing (OFDM) based wireless communication systems. In this paper, we propose a hybrid procedure to accomplish this task efficiently. One of the key importance of the approach is the judicious combination of two independent estimators so as to reduce the bandwidth overhead and computational complexity over many conventional methods. It employs the cyclic prefix and a few null subcarriers, respectively, for the fractional and integer frequency offset estimations. We also propose a novel null subcarrier allocation scheme based on Fibonacci series. The range of frequency offset that can be estimated by the proposed technique is equal to the full OFDM bandwidth. Furthermore, performance of the proposed CFO estimator is mathematically analyzed by deriving an expression for the bit error probability of the receiver under Rayleigh fading channel and the Cramer-Rao lower bound for the mean square estimation error. For moderate SNRs, our approach is shown to greatly outperform some recently published methods in terms of BER performance, bandwidth overhead and receiver complexity.  相似文献   

11.
A joint optimization scheme for power allocation and subcarrier pairing under high SNR in two-way multi-relay OFDM system was proposed.Unlike those schemes in which relays use subcarriers separately,all the relays were allowed to forward signal on each subcarrier pair for providing much space diversity.With the constraint of total system power,the proposed scheme firstly allocated each relay power with Cauchy inequality with the assuming that the total relay power was fixed.Then the dichotomy was used to calculate the power allocation between the source node and the relay node by maximizing the equivalent channel gain for different subcarrier pairs.Lastly,the power of different subcarrier pairs was allocated by convex programming,and the subcarriers were paired by Hungarian algorithm to obtain the maximum system capacity.There was no optimal power allocation method with low complexity because of the complexity of the power allocation algorithm in two-way multi-relay networks.This algorithm greatly reduces the complexity of power allocation and simulation results show that the proposed scheme outperforms the relay selection scheme and the relays use subcarriers separately scheme.  相似文献   

12.
This paper proposes a subcarrier weighting technique to suppress the out‐of‐band radiation of OFDM signals. By mapping and weighting the same data on an adjacent pair of subcarriers, the spectrum sidelobes are suppressed perfectly through sidelobes mutual cancellation. The optimum weighting factor is derived based on a rectangular pulse‐shaped OFDM spectrum model. Compared with existing out‐of‐band suppression schemes, the proposed scheme not only requires less computational burden but also achieves better spectral roll‐off. For example, when the cyclic prefix of a one‐eighth OFDM‐block length is added, the proposed scheme suppresses the 10‐dB radiation at the center frequency between two subbands which are using cognitive radio. Analytical and simulation results also show that the proposed scheme improves the system carrier‐to‐interference ratio by 10 dB at a normalized frequency offset above 0.1, which leads to the performance improvement in terms of the BER on AWGN channel and multipath fading channel. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Future broadband wireless communication systems demand high quality of service (QoS) for anytime anywhere multimedia applications. The standards which use orthogonal frequency division multiplexing (OFDM) coupled with multi input multi output (MIMO) are expected to rule the future wireless world. Time selective nature of the channel introduces inter carrier interference (ICI), which is the major performance limiting parameter in OFDM based systems. ICI causes loss in spectral efficiency and results in poor bit error rate (BER) performance, affecting the QoS of MIMO-OFDM systems. The conventional single input single output (SISO)-OFDM-flexible subcarrier spacing (FSS) system offers better performance than the fixed subcarrier spacing systems in terms of ICI mitigation. But BER and spectral efficiency performance of SISO-OFDM-FSS is not good enough to satisfy the requirements of future wireless broadband services. To improve the BER performance, SISO-OFDM system is replaced by space frequency block coded (SFBC)-OFDM system, which adds spatial and frequency diversity benefits to the conventional system. More number of antennas in the MIMO scheme increases the hardware cost, computational complexity and percentage of overhead. In the present study, to improve the spectral efficiency and to reduce the complexity and cost, optimal transmit antenna selection (OTAS) is combined with the SFBC-OFDM-FSS scheme. The simulation results prove that the proposed SFBC-OFDM-FSS-OTAS scheme offers better QoS than the conventional SISO-OFDM-FSS scheme.  相似文献   

14.
文凯  喻昉炜  周斌  张赛龙 《电视技术》2015,39(15):55-59
针对OFDMA中继网络的两跳特性,提出一种基于两跳匹配的中继网络联合资源分配算法。首先根据中继网络的两跳性建立两跳速率匹配模型,然后利用对偶分解理论将中继网络资源分配的主问题分解为:中继选择、子载波分配和功率分配三个主要的子问题并进行联合优化,同时基于中继网络两跳性在子载波分配的过程中考虑两跳子载波配对,以逼近系统最优解。最后为了保证算法的公平性,考虑子载波分配因子约束以优化子载波分配。仿真结果表明:所提算法将中继选择、两跳子载波配对与功率分配联合优化以进一步提升系统吞吐量,同时引入子载波分配因子约束,保证了算法的公平性。  相似文献   

15.
针对无线OFDM多播系统,该文提出一种基于子载波合并的多播资源调度算法。该算法通过提前将子载波分组,避免了不必要的子载波配对;自适应地选择子载波合并\非合并,在分集和复用两种模式中选取最优方案;同时根据子载波功率分配的特点,将其解耦为配对子载波集合内功率分配和集合间功率分配两个子问题,进一步优化了算法性能。仿真结果表明,与现有方案相比,所提方案能够在复杂度较低的情况下,较好地提升系统性能。  相似文献   

16.
Cooperation Strategies and Resource Allocations in Multiuser OFDMA Systems   总被引:1,自引:0,他引:1  
Cooperative communication and orthogonal frequency-division multiplexing (OFDM) technology are both promising candidates for next-generation wireless communication systems. In this paper, we investigate cooperation strategies and resource-allocation algorithms for multiuser cooperative orthogonal frequency-division multiple-access (OFDMA) systems. There are two major contributions of this paper. First, we propose a novel cooperation strategy for the OFDMA system. When there are two users in the system, the strategy achieves the capacity region upper bound for decode-and-forward (DF) cooperation. When there are multiple users in the system, the strategy can achieve near upper-bound performance in certain network topologies. Moreover, the strategy always outperforms those that are previously proposed for cooperative OFDMA systems. The second contribution is that we develop novel centralized resource-allocation algorithms for cooperative OFDMA systems. The advantages of the algorithms are that they not only simultaneously solve relay, power, and subcarrier allocation but also have complexity that increases only linearly with the number of subcarriers in the systems.   相似文献   

17.
1IntroductionRecently,alarge amount of research has beenfocusedonthe high data rate transmissiontechniques over wire-less channels . One of the main requirements on thesetransmissiontechniques is the ability to combat the In-ter-Symbol Interference (ISI) ,a major problemin highdata rate transmission over multipath fading channels .OFDMis one of the promising solutions to this prob-lem[1 ~3 ,12],andrecently IEEE802 .16e[7]alsosuggest-ed using OFDM structure as its physical layer . Thecom…  相似文献   

18.
Multiuser OFDM with adaptive subcarrier, bit, and power allocation   总被引:68,自引:0,他引:68  
Multiuser orthogonal frequency division multiplexing (OFDM) with adaptive multiuser subcarrier allocation and adaptive modulation is considered. Assuming knowledge of the instantaneous channel gains for all users, we propose a multiuser OFDM subcarrier, bit, and power allocation algorithm to minimize the total transmit power. This is done by assigning each user a set of subcarriers and by determining the number of bits and the transmit power level for each subcarrier. We obtain the performance of our proposed algorithm in a multiuser frequency selective fading environment for various time delay spread values and various numbers of users. The results show that our proposed algorithm outperforms multiuser OFDM systems with static time-division multiple access (TDMA) or frequency-division multiple access (FDMA) techniques which employ fixed and predetermined time-slot or subcarrier allocation schemes. We have also quantified the improvement in terms of the overall required transmit power, the bit-error rate (BER), or the area of coverage for a given outage probability  相似文献   

19.
This paper proposes a cooperative quadrature physical layer network coding (CQPNC) scheme for a dual‐hop cooperative relay network, which consists of two source nodes, one relay node and one destination node. All nodes in the network have one antenna, and the two source nodes transmit their signals modulated with quadrature carriers. In this paper, a cooperative quadrature physical layer network coded decode‐and‐forward (DF) relay protocol (CQPNC‐DF) is proposed to transmit the composite information from the two source nodes via the relay node to the destination node simultaneously to reduce the number of time slots required for a transmission. The proposed CQPNC‐DF relay protocol is compared with time‐division multiple‐access amplify‐and‐forward (TDMA‐AF), TDMA‐DF, cooperative network coded DF (CNC‐DF) and cooperative analog network coded AF (CANC‐AF) relay protocols to demonstrate its effectiveness in terms of bit error rate (BER) and system throughput under different propagation conditions. The simulation results reveal that the proposed CQPNC‐DF relay protocol can significantly improve the network performance. Compared with two TDMA schemes and CNC‐DF, the proposal can provide up to 100% and 50% throughput gains, respectively. Moreover, no matter what the scene, the proposed scheme always has the lowest BER in the low SNR region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
This paper investigates the effects of phase noise on the performance of orthogonal frequency division multiplexing (OFDM) systems using an intercarrier interference (ICI) cancellation scheme. In this case, the common phase error (CPE) and ICI caused by phase noise depend on the overall spectrum of each weighted group of subcarriers rather than on the spectrum of each individual subcarrier. This means that the system performance can be improved by filtering the phase noise to fit a particular spectrum. It is shown that the ICI cancellation scheme can significantly improve the bit error rate (BER) performance in the presence of phase noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号