首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 151 毫秒
1.
镍硼合金作为高温焊接材料广泛应用于航空航天、钢铁冶金、石油化工以及能源电力等领域。镍硼合金的力学性能受硼含量影响,准确测定镍硼合金中的硼含量尤为重要。采用王水分解样品,在10%王水介质中,以电感耦合等离子体原子发射光谱法(ICP-AES)测定硼,建立了ICP-AES测定镍硼合金中硼的方法。实验结果表明,溶液中镍质量浓度不大于2500μg/mL时,不干扰硼的测定,其他共存元素含量较低,均不干扰测定;校准曲线的线性范围为0.25~25.00μg/mL,校准曲线线性相关系数为0.99995;方法检出限为2.0μg/g。方法用于镍硼合金中0.55%~9.81%硼的测定,结果的相对标准偏差(RSD,n=11)为0.92%~4.9%。分别使用实验方法和滴定法、分光光度法测定相同镍硼合金样品中硼,测定结果基本一致。  相似文献   

2.
段双  朱智  金小成  高鹏 《冶金分析》2019,39(2):61-65
硼钛复合材料中硼含量多少关系到增强相(BTi)占比,直接影响硼钛复合材料各项机械性能。故硼测定结果对硼钛复合材料研究有重要意义。实验提出采用硫酸(1+1)分解样品,选择B 208.890nm作为分析线,采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定硼钛复合材料中硼。通过条件试验优化仪器的工作条件为发生器功率1.2kW和雾化气压力0.23MPa。硼质量浓度在5.00~50.0μg/mL范围内与其发射强度呈线性关系,线性相关系数大于0.999;方法检出限为0.00045%,测定下限为0.0015%。按照实验方法分别测定5种硼钛复合材料中硼,其结果的相对标准偏差(RSD,n=11)为0.44%~0.68%,加标回收率为94%~103%。  相似文献   

3.
高颂  庞晓辉  张艳 《冶金分析》2018,38(2):59-64
DD6单晶镍基高温合金中含有Ta、Re、W等合金元素,因此样品溶解较为困难,得到的样品溶液也不稳定。实验采用盐酸-硝酸体系溶解样品,以镍基体匹配法绘制校准曲线克服了基体镍的干扰,实现了氢化物发生-原子荧光光谱法对DD6单晶镍基高温合金样品中As含量的测定。对溶样方法进行了探讨,结果表明,采用20mL盐酸-5mL硝酸、加热(100℃左右)溶解样品后,虽然会有少量不溶物存在,但待测元素As已完全溶出,即不溶物中未夹带元素As,因此实验选择该溶样方法进行溶样。对仪器的负高压、灯电流进行了优化试验,确定负高压为280V,灯电流为60mA。根据样品中镍的含量,分别采用无基体匹配和镍基体匹配法建立校准曲线,结果表明,对于同样质量浓度的As标准溶液,有基体镍存在时的测定结果均较无基体镍时明显偏低,说明镍基体的干扰对测定不可忽略,故实验采用镍基体匹配法绘制校准曲线。方法线性范围为0.00005%~0.001%,方法检出限为2×10-5μg/mL。按实验方法对6个DD6单晶镍基高温合金样品进行测定,测得结果与高流速辉光放电质谱法基本一致,测得结果的相对标准偏差(RSD,n=8)为2.3%~8.7%。  相似文献   

4.
沈真 《冶金分析》2022,42(7):82-86
在钢铁冶炼过程中,铬铁合金作为钢的添加料,应用非常广泛。在某些优质钢种中,硼元素指标要求非常严格,因此,准确测定铬铁中痕量硼含量具有重要意义。实验研究了溶样酸对样品溶解的影响,采用盐酸-硝酸-氢氟酸体系溶解样品,同时优化了工作参数(分析功率和雾化气流量),并研究了分析谱线及基体效应对硼测定结果的影响,最终选择B 208.95 nm为分析谱线,使用基体匹配法绘制校准曲线消除基体效应的影响,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定铬铁中痕量硼的方法。校准曲线的线性相关系数r为0.999 4;硼的检出限为0.000 42%,定量限为0.001 4%。按照实验方法测定铬铁样品中硼,结果的相对标准偏差(RSD,n=11)不大于10%,回收率为95%~110%。  相似文献   

5.
沈真 《冶金分析》1981,42(7):82-86
在钢铁冶炼过程中,铬铁合金作为钢的添加料,应用非常广泛。在某些优质钢种中,硼元素指标要求非常严格,因此,准确测定铬铁中痕量硼含量具有重要意义。实验研究了溶样酸对样品溶解的影响,采用盐酸-硝酸-氢氟酸体系溶解样品,同时优化了工作参数(分析功率和雾化气流量),并研究了分析谱线及基体效应对硼测定结果的影响,最终选择B 208.95 nm为分析谱线,使用基体匹配法绘制校准曲线消除基体效应的影响,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定铬铁中痕量硼的方法。校准曲线的线性相关系数r为0.999 4;硼的检出限为0.000 42%,定量限为0.001 4%。按照实验方法测定铬铁样品中硼,结果的相对标准偏差(RSD,n=11)不大于10%,回收率为95%~110%。  相似文献   

6.
锂硼合金中锂元素的含量对电池的电化学性能起着决定性作用。而使用重量法测定锂时,流程较长,且大量共存的硼干扰锂的测定。试验探究了先使用甲醇除硼再采用硫酸锂重量法测定锂硼合金中锂的方法。样品经稀硝酸溶解后,加入2.0mL无水甲醇,于90℃左右恒温水浴锅中挥发除硼,然后加入2.0mL硫酸(1+1)和少量水溶解盐类,转移至铂坩埚中,高温加热至硫酸烟冒尽,将铂坩埚移入800℃马弗炉中灼烧3h,使锂生成硫酸锂并恒重、称量,并用电感耦合等离子体原子发射光谱法(ICP-AES)测定固体中的氧化硼和硫酸镁的含量以修正测定结果。方法用于测定3种锂硼合金实际样品中锂,结果的相对标准偏差(RSD,n=11)为0.34%~0.56%;加标回收率为98%~103%。  相似文献   

7.
烧结机头电除尘灰的交易日益活跃,而贵金属银含量为其定价的主要指标,故研究对其中银的测定方法具有重要意义。于700℃马弗炉中对试样进行灰化预处理后,再以电热板加热的方式用15mL王水-8mL氢氟酸-5mL高氯酸对其消解,或以微波的方式用6mL王水-3mL氢氟酸-2mL高氯酸对其进行消解,继而以20%~25%(体积分数)王水作为介质,用火焰原子吸收光谱法对消解液进行测定,据此,分别建立了电热板加热消解-火焰原子吸收光谱(FAAS)法与微波消解-火焰原子吸收光谱法两种测定烧结机头电除尘灰中银的方法。共存元素干扰试验表明:样品中除铁和钙外其他元素不干扰测定,通过向校准曲线用银标准溶液系列中加入5 500μg/mL铁、571.76μg/mL钙(相当于800μg/mL氧化钙)的方法可消除铁和钙对测定的干扰。分别采用实验建立的两种方法,对烧结机头电除尘灰实际样品中银进行测定,结果表明,两种方法的测定结果均与电感耦合等离子体原子发射光谱(ICP-AES)法相符,相对标准偏差(RSD,n=11)分别为1.4%~2.2%和2.0%~2.6%,回收率均在95%~104%范围内。  相似文献   

8.
任玲玲 《冶金分析》2018,38(2):71-75
使用盐酸-氢氟酸并采用微波消解处理炉渣样品,选择B 182.577nm或B 249.678nm为分析线,在基体没有明显干扰的情况下,选择自动匹配法(FITTED)进行谱线校正并扣除相应背景,采用高纯物质进行基体匹配后,配制标准溶液系列,建立了使用电感耦合等离子体原子发射光谱法(ICP-AES)测定炉渣系列样品中硼元素含量的方法。硼的质量分数为0.0006%~0.25%(B 182.577nm)或0.0008%~0.25%(B 249.678nm)范围内校准曲线呈线性,线性相关系数r均不小于0.9998;方法中硼的检出限小于0.0002%。方法应用于炉渣样品中硼的测定,结果的相对标准偏差(RSD,n=6)小于3%,加标回收率为96%~102%,与电感耦合等离子体质谱法(ICP-MS)进行比较,测定结果较为满意。  相似文献   

9.
碳对铁硅硼非晶合金薄带的性能有重要影响。讨论了高频感应燃烧红外吸收法测定铁硅硼非晶合金薄带中碳含量的方法,优化了样品尺寸、称样量、助熔剂等关键参数。确定的最佳工作条件如下:将铁硅硼非晶合金薄带剪切为尺寸不大于5mm×5mm的碎片;称取0.2g样品于陶瓷坩埚中,按照0.2g锡-0.4g铁-1.7g钨,或0.2g锡-1.7g钨的顺序加入多元混合助熔剂;采用钢铁标准样品校准仪器。结果表明:样品尺寸对测定结果有显著影响,较大的样品尺寸会导致测定值偏低;称样量,助熔剂种类、用量及加入顺序对测定结果有轻微影响。采用0.2g锡-0.4g铁-1.7g钨作助熔剂时,方法空白值为(22±9.7)μg/g(n=10),检出限为0.003%,定量限为0.010%。采用0.2g锡-1.7g钨作助熔剂时,方法空白值为(4.4±6.7)μg/g(n=10),检出限为0.002%,定量限为0.007%。综上,实验方法的定量限为0.007%~0.010%。将实验方法用于铁硅硼非晶合金薄带实际样品分析,结果的相对标准偏差(RSD,n=8)小于3.5%,加标回收率为90%~107%。  相似文献   

10.
赵涛  缪红 《冶金分析》2016,36(4):34-38
介绍了火花源原子发射光谱在铁基非晶合金钢中Si、B元素含量测定方面的研究。通过对非晶合金钢中Si和B分析谱线强度稳定性的试验比较,确定了Si的分析谱线为212.41 nm,B的分析谱线为345.14 nm;通过预燃试验确立了分析Si、B的最佳预燃时间为13 s 。采用部分国际标样和研制的内控样品绘制Si和B的校准曲线,在扣除了元素干扰后进行了曲线拟合。用Si 212.41 nm分析谱线绘制高含量Si(质量分数3.15%~7.04%)的校准曲线,使原有软件中曲线范围拓宽为0.003%~7.04%;用B 345.14 nm分析谱线绘制高含量B(质量分数0.90%~3.31%)的校准曲线,使B校准曲线范围拓宽为0.000 1%~3.31%。用实验方法测定非晶合金样品中的Si和B含量,测定结果的相对标准偏差(RSD,n=10)均不超过1.0%;准确度试验结果表明实验方法的测定值与电感耦合等离子体原子发射光谱法(ICP-AES)的测定值具有较好的一致性。  相似文献   

11.
电感耦合等离子体质谱法测定硫化矿中金   总被引:2,自引:0,他引:2       下载免费PDF全文
选取60 mL逆王水和60 mL王水溶解5~10 g样品,在基体浓度不大于5.0 mg/mL时,以1%王水做为测定介质、Rh为内标,建立了电感耦合等离子体质谱法(ICP-MS)测定硫化矿中金的方法。试样中基体共存元素和试样分解所引入的酸以及载气等形成的复合离子对测定无干扰。方法检出限为0.007 5 ng/mL,测定下限为0.025 ng/mL,回收率为98%~104%。方法应用于硫化矿实际样品分析,测得结果与电感耦合等离子体原子发射光谱法(ICP-AES)一致,相对标准偏差(RSD,n=8)在0.78%~3.2%之间。  相似文献   

12.
采用电感耦合等离子体原子发射光谱法(ICP-AES)代替传统的化学分析方法,建立了快速测定非晶合金中的高含量硼的方法。对样品的处理方法和测试条件进行研究。结果表明:试样用王水溶解后,加入氢氟酸,继续在90℃水浴中加热溶解试样,试样溶解完全,实现了对难溶合金中B元素的快速测定。在选择硼的分析线为182.640 nm下测定,共存元素没有干扰,基体铁和钴的干扰采用基体匹配方法消除。通过回收试验及精密度试验,证明方法有较高准确度和精密度,分析周期比化学法短。  相似文献   

13.
丙烷脱氢技术越来越受到重视,其生产原料液化石油气(LPG)中汞含量的控制是生产的关键环节,因此迫切需要一种高效稳定的检测汞的方法。应用阳离子交换树脂在线富集液化石油气中的汞,用20%(体积分数,下同)王水湿法消解,建立了电感耦合等离子体质谱法(ICP-MS)测定LPG中汞的方法。对富集条件和消解方式进行了优化。确定汞的在线富集条件为:压力1.3MPa,流速500mL/h;样品的消解程序为:12g样品中加入50mL 20%王水于60℃消解1h。以基体匹配标准溶液校正了基体效应,选用202Hg为待测同位素消除了质谱干扰。实验表明,方法的线性范围为0.08~50μg/L,线性相关系数为0.999795,检出限为0.02μg/L。采用实验方法对液化石油气实际样品中汞进行分析,结果的相对标准偏差(RSD,n=5)为1.3%~6.6%,加标回收率为95%~101%。  相似文献   

14.
刘爱坤 《冶金分析》2015,35(9):42-46
采用王水并滴加氢氟酸溶解含铬镍生铁样品,高氯酸冒烟,采用标准样品/控制样品制作校准曲线,测定过程采用内标法,实现了使用电感耦合等离子体原子发射光谱法(ICP-AES)测定含铬镍生铁中高镍、高铬以及锰、磷、钼、铜和钴等元素的测定。在仪器工作条件下,各元素校准曲线线性相关系数均大于0.999,其中镍元素线性相关系数达到0.999 9。方法中各元素的检出限为0.002 0~0.020 μg/mL。采用实验方法对含铬镍生铁实际样品中的镍、铬、锰、磷、钼、铜和钴含量进行测定,结果与国家标准化学分析方法基本一致,相对标准偏差(RSD,n=11)在0.53%~5.0%之间。  相似文献   

15.
采用王水消解无铅焊料样品,基体匹配法绘制校准曲线消除基体干扰对测定结果的影响,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定无铅焊料中银、铜、铅、铁、锌、镉、砷、铝、锑、铋、铟、镍等12种元素的方法。在选定的实验条件下,方法中各元素的检出限在0.000 2~0.016 μg/mL之间,各元素校准曲线线性相关系数均大于0.999 5。按照实验方法测定样品,加标回收率为87%~125%,测定结果的相对标准偏差(RSD,n=6)在0.25%~5.1%之间,测定结果与参考值一致。  相似文献   

16.
准确测定辛酸铑催化剂中杂质元素含量,是判定产品是否合格的重要指标之一。以往常采用直流电弧发射光谱法(摄谱法)进行检测,但测定周期长,且重复性较差。用电感耦合等离子体原子发射光谱法(ICP-AES)测定辛酸铑催化剂中微量杂质元素时,辛酸铑催化剂样品中含有的大量有机组分和铑基体会对测定有严重干扰。实验采用反复滴加硝酸消解样品中有机组分,再用王水溶解盐类,选用合适背景点扣除的方式消除铑基体的干扰,建立了使用ICP-AES测定辛酸铑催化剂中0.001%~0.1%(质量分数)Pt、Pd、Pb、Fe、Cu、Al、Ni等7种微量杂质元素的方法。各元素在0.10~10.00μg/mL范围内与其发射强度呈线性关系,相关系数均大于0.9999;方法检出限(μg/mL)为0.075(Pt)、0.0033(Pd)、0.015(Pb)、0.0036(Fe)、0.010(Cu)、0.001(Al)、0.012(Ni)。实验方法用于测定辛酸铑催化剂样品中Pt、Pd、Pb、Fe、Cu、Al、Ni,结果的相对标准偏差为(RSD,n=7)为1.4%~9.6%。按照实验方法测定辛酸铑催化剂中Pt、Pd、Pb、Fe、Cu、Al、Ni,并与直流电弧发射光谱法的测定结果进行比对,结果相一致。  相似文献   

17.
王虹  魏秉炎  韩娟  张良 《冶金分析》2018,38(7):68-72
在体积分数为5%的盐酸介质中,使用空气-乙炔火焰,以240.7nm为测定波长,建立了火焰原子吸收光谱法(FAAS)测定冰铜中钴的方法。溶样试验表明,采用 20mL王水、1mL氢氟酸和2mL高氯酸溶样后加入10mL盐酸(1+1)溶解盐类,大多数情况下可将试样溶解完全;如果试样溶解不完全,需要补加5mL硝酸,继续加热至棕红色烟雾消失,再加入2mL高氯酸加热至白烟冒尽可将试样溶解完全。在选定的仪器条件下,钴的质量浓度与吸光度呈良好的线性关系,相关系数为0.9992,方法检出限为0.0075μg/mL。干扰试验表明,试样中的共存元素不干扰钴的测定。将实验方法应用于4个冰铜样品中钴的测定,对测定结果进行格拉布斯(Grubbs)检验,结果表明11次平行测定的结果无异常值,相对标准偏差(RSD,n=11)在1.7%~8.5%之间。采用实验方法对2个不同钴含量阶梯的冰铜试样进行测定,测得结果与电感耦合等离子体原子发射光谱法(ICP-AES)基本一致,加标回收率在90%~105%之间。分别在6家实验室采用实验方法进行冰铜试样的测定,方法的重复性限为r=0.0006+0.0429m;再现性限为R=0.0046+0.0647m。  相似文献   

18.
锡铝合金是一种潜在的特殊物理实验用功能材料,准确测定铝元素含量对该材料的研究具有重要意义。实验采用稀王水溶解样品,选择Al 396.152 nm 作为分析谱线,采用基体匹配法绘制校准曲线消除基体效应的影响,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定锡铝合金中铝含量的方法。铝的质量浓度在1.00~20.00 mg/L范围内与谱线强度呈良好线性关系,相关系数r为0.999 9,方法检出限为0.001 3%(质量分数,下同),定量限为0.004 3%。按照实验方法测定3个锡铝合金样品中铝,结果的相对标准偏差(RSD,n=6)不大于1.3%,回收率为97%~102%,且与分光光度法的测定值基本一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号