首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 171 毫秒
1.
景年昭  杨维 《计算机应用》2019,39(9):2535-2540
针对目前基于深度学习的边缘检测技术生成的边缘粗糙及模糊等问题,提出一种基于更丰富特征的边缘检测(RCF)模型的端到端的精细边缘检测模型。该模型以RCF模型为基础,在主干网络中引入"注意力"机制,采用SE模块提取图像边缘特征,并且去掉主干网络部分下采样,避免细节信息过度丢失,使用扩张卷积技术增大模型感受野,并利用残差结构将不同尺度的边缘图进行融合。对伯克利分割数据集(BSDS500)进行增强,使用一种多步骤的训练方式在BSDS500和PASCAL VOC Context数据集上进行训练,并用BSDS500进行测试实验。实验结果表明,该模型将全局最佳(ODS)和单图最佳(OIS)指标分别提高到了0.817和0.838,在不影响实时性的前提下可以输出更精细的边缘,同时还具有较好的鲁棒性。  相似文献   

2.
欧阳宁  韦羽  林乐平 《计算机应用》2020,40(10):3041-3047
针对图像超分辨率重建模型需要大量参数去捕获低分辨率(LR)图像和高分辨率(HR)图像之间的统计关系,以及使用L1L2损失优化的网络模型不能有效恢复图像高频细节等问题,提出一种结合感知边缘约束与多尺度融合网络的图像超分辨率重建方法。该方法基于由粗到细的思想,设计了一种两阶段的网络模型。第一阶段通过卷积神经网络(CNN)提取图像特征,并将图像特征上采样至HR大小,得到粗糙特征;第二阶段使用多尺度估计将低维统计模型逐步逼近高维统计模型,将第一阶段输出的粗糙特征作为输入来提取图像多尺度特征,并通过注意力融合模块逐步融合不同尺度特征,以精细化第一阶段提取的特征。同时,该方法引入一种更丰富的卷积特征用于边缘检测,并将其作为感知边缘约束来优化网络,以更好地恢复图像高频细节。在Set5、Set14和BSDS100等基准数据集上进行实验,结果表明与现有的基于CNN的超分辨率重建方法相比,该方法不但能够重建出更为清晰的边缘和纹理,而且在×3和×4放大因子下的峰值信噪比(PSNR)和结构相似度(SSIM)都取得了一定的提升。  相似文献   

3.
欧阳宁  韦羽  林乐平 《计算机应用》2005,40(10):3041-3047
针对图像超分辨率重建模型需要大量参数去捕获低分辨率(LR)图像和高分辨率(HR)图像之间的统计关系,以及使用L1L2损失优化的网络模型不能有效恢复图像高频细节等问题,提出一种结合感知边缘约束与多尺度融合网络的图像超分辨率重建方法。该方法基于由粗到细的思想,设计了一种两阶段的网络模型。第一阶段通过卷积神经网络(CNN)提取图像特征,并将图像特征上采样至HR大小,得到粗糙特征;第二阶段使用多尺度估计将低维统计模型逐步逼近高维统计模型,将第一阶段输出的粗糙特征作为输入来提取图像多尺度特征,并通过注意力融合模块逐步融合不同尺度特征,以精细化第一阶段提取的特征。同时,该方法引入一种更丰富的卷积特征用于边缘检测,并将其作为感知边缘约束来优化网络,以更好地恢复图像高频细节。在Set5、Set14和BSDS100等基准数据集上进行实验,结果表明与现有的基于CNN的超分辨率重建方法相比,该方法不但能够重建出更为清晰的边缘和纹理,而且在×3和×4放大因子下的峰值信噪比(PSNR)和结构相似度(SSIM)都取得了一定的提升。  相似文献   

4.
传统边缘检测算法难以处理复杂的图像, 而现有基于深度的边缘检测模型, 其检测结果往往存在边缘定位错误和信息丢失等现象. 针对此类问题, 提出一种基于RCF的高精度的边缘检测算法RCF-CLF. 首先, 引入HDC结构设计用于避免因叠加相同膨胀卷积而引起的网格效应; 其次, 设计了一种特征增强结构, 旨在融合多尺度信息、扩大感受野; 然后, 设计了跨层融合结构, 将高层信息和低层信息融合, 用于提取准确的边缘信息; 最后, 引入注意力机制CBAM, 通过聚焦物体边缘区域, 抑制非边缘区域, 从而提高网络对边缘信息的提取能力. 本文在BSDS500和BIPED数据集上评估所提出的方法, 与RCF算法相比, 在BIPED数据集上, 主要指标ODS、OIS和AP分别达到了0.893、0.901和0.945, 提高了近5个百分点, 在BSDS500数据集上, 主要指标也有所提升. 此外, 与其他同类算法相比, 本文算法也具有一定的优势, 可以实现更加准确的边缘定位.  相似文献   

5.
黄胜  冉浩杉 《计算机工程》2022,48(3):204-210
边缘检测是在图像中准确地提取视觉上显著的边缘像素,以得到图像的边缘信息,然而传统基于全卷积网络的边缘检测方法通常存在预测边缘粗糙、模糊等问题。提出一种语义信息指导的精细化边缘检测方法。通过图像分割子网络将学习到的图像语义信息传递给边缘检测子网络,同时利用图像语义信息指导边缘检测子网络,其引入具有注意力机制与残差结构的特征融合模块,以生成精细的图像边缘,增强不同尺度的特征融合。在此基础上,结合图像分割任务和图像边缘检测任务中的代价函数定义新的模型代价函数并进行训练,进一步提高网络边缘检测质量。在BSDS500数据集上的实验结果验证了该方法的有效性,结果表明,该方法的固定轮廓阈值与图像最佳阈值分别达到0.818和0.841,相比HED、RCF等主流边缘检测方法,能够预测更精细的边缘图像,且鲁棒性更优。  相似文献   

6.
针对遥感图像背景复杂、小目标多、特征提取难等问题,提出了一种注意力特征融合的快速遥感图像目标检测算法——YOLO-Aff。该算法设计了一种带通道注意力的主干网络模块(ECALAN)以及模糊池(BP)模块来减小下采样带来的损失。此外,采用了一种无跨步卷积的特征金字塔网络(SPD-FPN)结合SimAM注意力特征融合模块(CBSA)来增强特征的跨尺度融合能力。最后,通过使用Wise-IoU作为网络的坐标损失来优化样本不均衡问题。实验结果表明,改进的YOLO-Aff算法在NWPU VHR-10数据集上的mAP值达到96%,较原算法mAP提高了2.9个百分点,为遥感图像的快速、高精度目标检测提供了新的解决方案。  相似文献   

7.
目的 拍摄运动物体时,图像易出现运动模糊,这将影响计算机视觉任务的完成。为提升运动图像去模糊的质量,提出了基于深度特征融合注意力的双尺度去运动模糊网络。方法 首先,设计了双尺度网络,在网络结构上设计高低尺度通路,在低尺度上增加对模糊区域的注意力,在高尺度上提升网络的高频细节恢复能力,增强了模型去模糊效果。其次,设计了深度特征融合注意力模块,通过融合全尺度特征、构建通道注意力,将编码的全尺度特征与解码的同级特征进行拼接融合,进一步增强了网络的去模糊性能和细节恢复能力。最后,在双尺度的基础上,引入多尺度损失,使模型更加关注高频细节的恢复。结果 在3个数据集上,与12种去模糊方法进行了对比实验。在GoPro数据集上得到了最优结果,相比SRN (scale-recurrent network)方法,平均峰值信噪比提升了2.29 dB,能够恢复出更多的细节信息。在Kohler数据集上,得到了最高的峰值信噪比(29.91 dB)。在Lai数据集上,视觉上有最好的去模糊效果。结论 实验结果表明,本文方法可以有效去除运动模糊并恢复细节。  相似文献   

8.
针对目前传统边缘检测方法提取出的图像边缘轮廓模糊、不连续等问题,提出一种基于双通道多尺度注意力机制的光伏板裂缝检测方法,实现对图像低级边缘、边界、目标轮廓的检测。首先构建了双通道主干网络,包含语义分支通道和空间细节分支通道;其次基于多尺度原则,构建了多尺度及注意力机制模块,对特征图像的高、宽、通道的维度变换,分配特征权重,在捕捉跨通道信息的同时,还能够捕捉方向感知和位置感知的信息;最后将空洞融合模块融合到语义分支通道中,提升网络提取特征信息的能力。实验结果表明,所提出的算法对光伏板图像边缘检测性能有提升,相较HED、RCF与FCN算法,F1值提升了2.83%、0.37%与1.54%,获得了较为清晰的裂缝图像。  相似文献   

9.
动态场景下的非均匀盲去模糊是一个极具挑战性的计算机视觉问题。虽然基于深度学习的去模糊算法已经取得很大进展,但仍存在去模糊不彻底和细节丢失等问题。针对这些问题,提出了一种基于残差注意力和多特征融合的去模糊网络。与现有的单分支网络结构不同,所提网络由两个独立的特征提取子网组成。主干网络采用基于U-Net结构的编码器-解码器网络来获取不同层级的图像特征,并使用残差注意力模块对特征进行筛选,从而自适应地学习图像的轮廓特征和空间结构特征。另外,为了补偿主干网络中下采样操作和上采样操作造成的信息损失,进一步利用具有大感受野的深层次加权残差密集子网来提取特征图的细节信息。最后,使用多特征融合模块逐步融合原分辨率模糊图像以及主干网络和加权残差密集子网生成的特征信息,使得网络能够以整体的方式自适应地学习更有效的特征来复原模糊图像。为了评估网络的去模糊效果,在基准数据集GoPro数据集和HIDE数据集上进行了测试,结果表明所提方法能够有效复原模糊图像。与现有方法相比,提出的去模糊算法在视觉效果上和客观评价指标上均取得了很好的去模糊效果。  相似文献   

10.
李翠锦  瞿中 《计算机应用》2020,40(11):3280-3288
边缘检测是将图像中的突变的重要信息提取出来的过程,是计算机视觉领域研究热点,也是图像分割、目标检测与识别等多种中高层视觉任务的基础。近几年来,针对边缘轮廓线过粗以及检测精度不高等问题,业内提出了谱聚类、多尺度融合、跨层融合等基于深度学习的边缘检测算法。为了使更多研究者了解边缘检测的研究现状,首先,介绍了传统边缘检测的实现理论及方法;然后,总结了近年来基于深度学习的主要边缘检测方法,并依据实现技术对这些方法进行了分类,对其涉及的关键技术进行分析,发现对多尺度多层次融合与损失函数的选择是重要的研究方向。通过评价指标对各类方法进行了比较,可知边缘检测算法在伯克利大学数据集(BSDS500)上的最优数据集规模(ODS)经过多年研究从0.598提高到了0.828,接近人类视觉水平。最后,展示了边缘检测算法研究的发展方向。  相似文献   

11.
李翠锦  瞿中 《计算机应用》2005,40(11):3280-3288
边缘检测是将图像中的突变的重要信息提取出来的过程,是计算机视觉领域研究热点,也是图像分割、目标检测与识别等多种中高层视觉任务的基础。近几年来,针对边缘轮廓线过粗以及检测精度不高等问题,业内提出了谱聚类、多尺度融合、跨层融合等基于深度学习的边缘检测算法。为了使更多研究者了解边缘检测的研究现状,首先,介绍了传统边缘检测的实现理论及方法;然后,总结了近年来基于深度学习的主要边缘检测方法,并依据实现技术对这些方法进行了分类,对其涉及的关键技术进行分析,发现对多尺度多层次融合与损失函数的选择是重要的研究方向。通过评价指标对各类方法进行了比较,可知边缘检测算法在伯克利大学数据集(BSDS500)上的最优数据集规模(ODS)经过多年研究从0.598提高到了0.828,接近人类视觉水平。最后,展示了边缘检测算法研究的发展方向。  相似文献   

12.
边缘检测的任务是将亮度变化明显的像素点识别为目标边缘,是计算机视觉低层级问题,并且边缘检测在对象识别和检测、对象提议生成、图像分割有着重要应用。如今,边缘检测已经产生了多类方法,如基于梯度的传统检测方法、基于深度学习的边缘检测算法,还有结合新兴技术的检测方法等。对这些方法进行更精细的分类,让研究者更清楚地了解边缘检测的发展趋势。对传统边缘检测的理论依据及实现方法做出介绍;详细介绍近年来主要的深度学习边缘检测方法,根据使用的方法进行分类,并对其中所使用的创新技术进行说明,如分支结构、特征融合和损失函数。衡量算法性能采用评估指标:单图最佳阈值(ODS)和帧数(FPS),在基础数据集(BSDS500)上进行对比。对边缘检测的研究现状进行分析和总结,对未来可能的研究方向进行展望。  相似文献   

13.
目的 引入视觉信息流的整体和局部处理机制,提出了一种多路径卷积神经网络的轮廓感知新方法。方法 利用高斯金字塔尺度分解获得低分辨率子图,用来表征视觉信息中的整体轮廓;通过2维高斯导函数模拟经典感受野的方向选择性,获得描述细节特征的边界响应子图;构建多路径卷积神经网络,利用具有稀疏编码特性的子网络(Sparse-Net)实现对整体轮廓的快速检测;利用具有冗余度增强编码特性的子网络(Redundancy-Net)实现对局部细节特征提取;对上述多路径卷积神经网络响应进行融合编码,以实现轮廓响应的整体感知和局部检测融合,获取轮廓的精细化感知结果。结果 以美国伯克利大学计算机视觉组提供的数据集BSDS500图库为实验对象,在GTX1080Ti环境下本文Sparse-Net对整体轮廓的检测速度达到42幅/s,为HFL方法1.2幅/s的35倍;而Sparse-Net和Redundancy-Net融合后的检测指标数据集尺度上最优(ODS)、图片尺度上最优(OIS)、平均精度(AP)分别为0.806、0.824、0.846,优于HED (holistically-nested edge detection)方法和RCF (richer convolution features for edge detection)方法,结果表明本文方法能有效突出主体轮廓并抑制纹理背景。结论 多路径卷积神经网络的轮廓感知应用,将有助于进一步理解视觉感知机制,并对减弱卷积神经网络的黑盒特性有着重要的意义。  相似文献   

14.
针对图像去噪网络中下采样导致高频信息损失和细节保留能力差的问题,设计了一种级联离散小波多频带分解注意力图像去噪网络。其中多尺度级联离散小波变换结构将原始图像分解为多个尺度下的高低频子带来代替传统下采样,能减少高频信息损失。多频带特征增强模块使用不同尺度的卷积核并行处理高低频特征,在子网络每一级下重复使用两次,可增强全局和局部的关键特征信息。多频带分解注意力模块通过注意力评估纹理细节成分的重要性并加权不同频带的细节特征,有助于多频带特征增强模块更好地区分噪声和边缘细节。多频带选择特征融合模块融合多尺度多频带特征增强选择性特征,提高模型对于不同尺度噪声的去除能力。在SIDD和DND数据集上,所提方法的PSNR/SSIM指标分别达到了39.35 dB/0.918、39.72 dB/0.955。实验结果表明,所提方法的性能优于主流去噪方法,同时具有更清晰的纹理细节和边缘等视觉效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号