首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
为了研究高温条件下Al2O3-C体系中氮化硅铁的状态,以闪速燃烧合成氮化硅铁、炭黑、刚玉粉为原料,将试样在高温炉中分别加热至1 450、1 500、1 600℃保温5 h,急速水冷后,对其进行XRD和显微结构分析。结果表明:1 450℃烧后试样的物相包含β-Si3N4、α-Si3N4、α-Al2O3和Fe3Si;1 500℃烧后试样的物相为β-Si3N4、SiC、α-Al2O3和Fe3Si;1 600℃烧后试样中Si3N4大部分转变为SiC,其他物相未发生变化。在升温过程中,氮化硅逐渐转化为碳化硅,材料结构致密。  相似文献   

2.
荆涛  许晓敏  郭伟 《硅酸盐通报》2015,34(3):722-726
以稻壳为原料,碳热还原法常压条件下合成出Si3N4粉体,进而模压成型,在低温下成功烧成了多孔氮化硅陶瓷.采用Archimedes法、三点弯曲法测量了烧结试样的密度、气孔率及抗弯强度.通过XRD测定了烧结试样的物相组成,并用SEM观察其显微形貌.结果表明:在1450℃到1550℃内均能烧成多孔氮化硅陶瓷,随着温度的升高,试样的气孔率逐渐降低,抗弯强度逐渐增强.1450~1500℃烧成试样的显气孔率为55.51% ~35.15%,其抗弯强度为23.74 ~86.85 MPa,主要物相为β-Si3N4.  相似文献   

3.
Si3N4-Al2O3-CaO系材料烧结性能及反应过程研究   总被引:2,自引:1,他引:2  
《耐火材料》2003,37(3):128-132
以氮化硅、活性氧化铝微粉和纯铝酸钙水泥为原料,研究了在焦炭保护情况下,Si3N4-Al2O3-CaO系材料经1500℃、1600℃和1650℃烧成时的烧结性能和物相变化,同时借助SEM、EDX和XRD等手段对其显微结构和反应过程进行了观察和分析.结果表明,该体系材料的烧结性能与试样的组成和烧成温度有关温度由1500℃升至1600℃,试样体积密度增加,显气孔率降低,但升至1650℃时,试样的体积密度反而下降,显气孔率增加;在同一温度下,试样中Si3N4含量增加,体积密度下降.同时,试样在烧成过程中存在质量变化现象1500℃烧成试样均表现为质量增加,当温度升至1600℃和1650℃时,试样质量又由增加变为减小.根据热力学分析推测,试样烧成过程中存在复杂的化学反应,低于1500℃时,反应Si3N4(s)+3/2CO(g)=3/2Si2N2O(s)+1/2N2(g)+3/2C(s)是试样质量增加的主要机理;高于1500℃时,反应Si3N4(s)+3/2CO(g)=3/2SiC(s)+3/2SiO(g)+2N2(g)是引起质量损失的主要机理.XRD分析显示,烧后试样中除存在刚玉和Si3N4相外,在烧成过程中还发生了物相变化1500℃时出现了钙黄长石相,1600℃时钙黄长石又消失,出现了Ca-α-Sia-lon和β-Sialon,温度升至1650℃时,Ca-α-Sialon又消失,β-Sialon却大量出现于部分试样中.因此可以认为,钙黄长石是铝酸钙水泥中CaO与Si3N4表面的SiO2和Al2O3反应形成的,温度升高时,其与Si3N4进一步反应形成Ca-α-Sialon,1650℃时Ca-α-Sialon消失,可能是在该温度下,试样内部的化学反应导致试样组成偏离Ca-α-Sialon相区;而β-Sialon是Si3N4固溶Al2O3反应形成的,其含量取决于试样中Al2O3、Si3N4的含量及烧成温度.  相似文献   

4.
以电熔镁砂、单质Si粉和鳞片石墨为主要原料,木质磺酸钙溶液(1.25 g/mL)为结合剂,氮气气氛下分别于低温段1350℃氮化2h和高温段1500℃氮化3h制备成MgO-C材料.通过X射线衍射(XRD)和扫描电子显微镜(SEM)分别分析试样的物相组成和显微结构,显气孔率、体积密度和耐压强度被用来表征试样的物理性能.结果表明:除500 MPa成型压力下试样内部生成少量的MgSiN2相外,不同成型压力氮化后试样的物相组成并无明显变化,主要生成α-Si3N4、β-Si3N4和少量的SiC相.试样内部原位氮化合成的β-Si3N4晶体主要呈现长柱状形貌.当成型压力为400 MPa时,β-Si3N4晶体的尺寸最大,试样显气孔率最低,耐压强度最大.  相似文献   

5.
刚玉-氮化硅-碳化硅复合材料的性能研究   总被引:2,自引:2,他引:0       下载免费PDF全文
以棕刚玉、氮化硅和碳化硅为原料在氧化气氛下制成试样.将试样分别在1500 ℃、1550 ℃和1600 ℃保温5 h进行埋炭处理.利用XRD、SEM和EDS等检测方法,结合热力学分析,研究了氧化气氛烧成后试样的物相变化以及高温埋炭条件下Si_3N_4的稳定性.结果表明:氧化气氛烧成后生成一种莫来石固溶体Si_6Al_(10)O_(21)N_4;高温埋炭处理后Si_3N_4和Si_6Al_(10)O_(21)N_4会部分转化为SiC,Si_3N_4向SiC明显转化的温度大于1500 ℃,Si_6Al_(10)O_(21)N_4向SiC明显转化的温度大于1550 ℃.  相似文献   

6.
田春艳  刘宁 《硅酸盐通报》2007,26(5):1020-1024
采用热压烧结方法,以非晶纳米Si3N4和α-Si3N4粉末作为原料,制备了纳米氮化硅陶瓷,研究了起始粉末对氮化硅陶瓷组织和力学性能的影响.纳米氮化硅陶瓷的主要组成相为α-Si3N4、β-Si3N4和Si2N2O;其组织由尺寸为100nm左右的晶粒组成,α-Si3N4起始粉末的添加对组织形态没有影响.抗弯强度和断裂韧性均随α-Si3N4起始粉末含量的增加而先升后降,在其含量为40%时达到最大值;硬度随α-Si3N4粉末含量的增加而降低.  相似文献   

7.
以Y2O3-Al2O3-La2O3体系作烧结助剂,在5.4~5.7GPa、1620K~1770K的高温高压条件下进行了α-Si3N2与γ-Si3N4、α-Si3N4粉体的烧结研究.探讨了烧结温度及压力对烧结体性能的影响.实验测试结果表明:α-Si3N4、γ-Si3N4完全相变为β-Si3N4,相同的烧结条件下,α-Si3N4比γ-Si3N4、α-Si3N4混合粉体烧结试样的相对密度、维氏硬度高.α-Si3N4与γ-Si3N4、α-Si3N4混合粉体烧结试样的最高相对密度与维氏硬度分别为98.78%、21.87GPa和98.71%、21.76GPa.烧结体由相互交错的长柱状β-Si3N4晶粒组成,显微结构均匀.  相似文献   

8.
Si3N4对镁质浇注料抗渣性能的影响   总被引:1,自引:0,他引:1  
以95烧结镁砂为主要原料,以SiO2微粉为结合剂,在配料的细粉部分分别以0、3%、4%、5%的β-Si3N4细粉替代等量的镁砂细粉,搅拌均匀后浇注成氮化硅含量不同的镁质坩埚试样。选用宝钢中间包渣,采用静态坩埚法,在1550℃3h条件下对这些坩埚试样进行了抗渣试验。试验结果表明:加入Si3N4可以明显改善镁质浇注料的抗渣性能,并且随着Si3N4加入量的增加,试样的抗渣性能提高;在含氮化硅的镁质浇注料表面,由于Si3N4被氧化为SiO2而形成了致密烧结层,能阻止渣的进一步渗透;在加入Si3N4的镁质浇注料试样内部深处,由于氧分压非常低,Si3N4稳定存在;由于Si3N4在还原气氛下难以烧结,造成镁质浇注料内部结构疏松。  相似文献   

9.
以Si3N4和BN粉末为原料,Si3N4-BN复合粉末中BN的体积分数分别选定为10%、20%和30%,采用质量分数为2%的Al2O3和6%的Y2O3作为烧结助剂,分别在1500、1600和1650℃,压力50 MPa,保温5 min的条件下,采用放电等离子体烧结法制备了致密Si3N4-BN复合陶瓷。XRD结果和SEM分析表明:当煅烧温度为1650℃时,复合陶瓷中的α-Si3N4已完全转变为β-Si3N4;BN的加入抑制了复合陶瓷中Si3N4晶粒的生长而使结构细化;复合陶瓷的维氏硬度和断裂韧性随BN含量的增加而逐渐降低。  相似文献   

10.
以Y2O3-Al2O3-La2O3体系作烧结助剂,在5.4~5.7GPa、1620-1770K的高温高压条件下进行了α-Si3N4与γ-Si3N4、α-Si3N4粉体的烧结研究,并探讨了烧结温度及压力对烧结体性能的影响。实验结果表明:α-Si3N4、γ-Si3N4完全相变为β-Si3N4;在相同的烧结条件下,α-SigN4比γ-Si3N4、α-Si3N4混合粉体烧结试样的相对密度、维氏硬度高。α-Si3N4与γ-Si3N4、α-Si3N4混合粉体烧结试样的最高相对密度与维氏硬度分别为98.78%、21.87GPa和98.71%、21.76GPa。烧结体由相互交错的长柱状β—Si3N4晶粒组成.显微结构均匀。  相似文献   

11.
添加Y2O3-Al2O3烧结助剂的氮化硅陶瓷的超高压烧结   总被引:1,自引:1,他引:1  
以Y2O3-Al2O3体系为烧结助剂,在5.4~5.7 GPa,1 570~1 770K的高温高压条件下进行了氮化硅陶瓷的超高压烧结研究.用X射线衍射及扫描电镜对烧结样品进行了分析和观察,探讨了烧结温度及压力对烧结的陶瓷样品性能的影响.结果表明:得到的氮化硅由相互交错的长柱状β-Si3N4晶粒组成,微观结构均匀,α-Si3N4完全转变为β-Si3N4.经5.7GPa,1 770K且保温15min的超高压烧结,样品的相对密度达99.0%,Rockwell硬度HRA为99,Vickers硬度HV达23.3GPa.  相似文献   

12.
研究了氮化硅(Si3N4)晶相结构对氮化硅结合碳化硅制品力学性能尤其是常温抗折强度的影响,分析了其作用机理,研究结果表明,α-Si3N4晶相对碳化硅的结合强度要高于α-Si3N4和β-Si3N4共同作用的结果,随着β-Si3N4量的增加,制品的抗折强度下降明显。  相似文献   

13.
将硅灰(w(SiO2)=94.5%,平均粒度0.08μm)和氮化硅(粒度≤0.074mm)按1:1质量比混合后成型,在空气中埋炭条件下分别经1300℃、1450℃、1500℃、1550℃、1600℃处理3h后水冷,对其显微结构及物相进行了分析。结果表明:在1550℃以上,以硅灰和氮化硅为原料反应生成Si2N2O比较明显,氮化硅颗粒的边角变得圆滑,而且分布在含Si2N2O的连续胶结相中,形成胶结相包裹Si3N4的致密结构;1500℃以下,氮化硅仍然棱角分明,基本上未形成Si2N2O,只是硅灰中的SiO2析晶,析晶比较显著的温度为1300℃。  相似文献   

14.
α-Si3N4晶须的制备与分析   总被引:4,自引:0,他引:4  
采用高频等离子体气相反应法制备的无定型氮化硅超细粉末为原料.通过在1450℃氮气气氛下,2h的热处理,使无定型氮化硅转为α相氮化硅,并生长出α-Si3N4晶须.试验分析证明所得到的α-Si3N4晶须直径为50~200nm,无明显缺陷,其晶须生长方向为〈0110〉.  相似文献   

15.
以氮化硅细粉(粒度<0.088 mm,w(β-Si3N4)>95%)、碳化硅(w(SiC)>98%,粒度分别为2.8~0.9mm、0.9~0.15 mm、<0.115 mm和<0.063 mm四级)、硅粉(粒度<0.045 mm,w(Si)>98%)和硅灰(w(SiO2)=98.3%)为原料,以木质素磺酸钙水溶液作成型结合剂,采用150 MPa的压力成型为65 mm×114 mm×230mm的Si3N4-SiC、Si3N4-SiC-Si和Si3N4-SiC-SiO2三种试样.在空气气氛中,以50℃·h-1的升温速度升至800℃保温4 h,再升至1450℃保温2 h,自然冷却至室温后,测定烧成后试样的常温耐压强度、常温抗折强度、1400℃下的高温抗折强度、显气孔率、体积密度和残氮率,并采用XRD、SEM和EPMA等手段分析烧后试样的相组成和显微结构.结果表明3种试样在空气气氛中烧成后的高温(1400℃)和常温抗折强度都比较高,显气孔率都比较低,而耐压强度则以Si3N4-SiC试样的最高;烧成后试样中心区域的残氮率以Si3N4-SiC-Si试样的最高,Si3N4-SiC-SiO2试样的次之,Si3N4-SiC试样的最小;在空气气氛中烧成后,Si3N4-SiC试样中的Si3N4分解较多,SiC-Si3 N4-Si试样的表面和内部都明显含有单质Si,SiC-Si3N4-SiO2试样表面区域的Si2N2O晶体发育很好,而内部区域的晶体发育较小.  相似文献   

16.
采用MgSiN2作为烧结助剂,在2000℃高温下热压26h,制备了透明β-Si3N4陶瓷.X射线衍射分析表明:透明β-Si3N4陶瓷由纯β-Si3N4相组成.透明-Si3N4陶瓷的透过率随波长增加而增加,当波长为2.5 μm时透过率达到最大值,为70%,波长在0.7~4.0 μm区间,透过率保持在60%以上,截止波长为5.0 μm.  相似文献   

17.
β-Si3N4对MgO-C砖高温性能的影响   总被引:5,自引:3,他引:2  
研究了β-Si3N4对镁碳砖高温性能的影响及其作用机理.研究表明由于β-Si3 N4呈针状结构,热膨胀系数低,对多数熔渣和金属的润湿性小,加入β-Si3N4的镁碳砖,其高温抗折强度提高,热膨胀率降低,抗渣侵蚀性提高;另外,在反应层与原砖层之间发现有富硅层形成,这有利于抑制石墨和氮化硅的氧化以及渣的渗透.  相似文献   

18.
李君  陈斐  张东明  沈强  张联盟 《硅酸盐学报》2008,36(Z1):103-107
利用流延成型使α-Si3N4晶须在基体中定向排列,并采用热压烧结技术制备了SGN4陶瓷.用X射线衍射和扫描电镜对陶瓷的物相和显微结构进行了研究,讨论了流延成型对坯体中晶须的分布状态的影响和烧结条件对所得到的块体的显微结构的影响.结果表明:流延成型和热压烧结可以使晶须呈一维定向排布;随着烧结温度的升高,烧结样品的相对密度增大;添加10.6%质量分数)α-Si3N4晶须在1500℃下烧结,Si3N4陶瓷的断裂韧性为9.24MPa·m1/2,Vickers硬度为15.740Pa.在1 600℃α-Si3N4转变成的长柱状β-Si3N4颗粒,大大提高了Si3N4陶瓷的力学性能,其断裂韧性和Vickers硬度分别为10.26MPa·m1/2和16.56GPa.  相似文献   

19.
采用直接起泡法,通过氮化硅颗粒稳定泡沫机制制备氮化硅泡沫陶瓷,研究了烧结温度、保温时间、烧结氮气压、烧结助剂(Al2O3+Y2O3)添加量以及Al2O3与Y2O3质量比对氮化硅泡沫陶瓷中晶须生长的影响,分析了泡沫陶瓷的微观结构。结果表明:通过工艺条件的控制可得到由长柱状β-Si3N4晶粒构成的显微结构;当烧结温度为1750℃、保温时间为4 h、烧结气压为0.9 MPa、烧结助剂添加量为6%(质量分数)、Al2O3与Y2O3质量比为1:1时,β-Si3N4晶粒的长径比达到12以上。  相似文献   

20.
采用直接起泡法,通过氮化硅颗粒稳定泡沫机制制备氮化硅泡沫陶瓷,研究了烧结温度、保温时间、烧结氮气压、烧结助剂(Al2O3+Y2O3)添加量以及 Al2O3与 Y2O3质量比对氮化硅泡沫陶瓷中晶须生长的影响,分析了泡沫陶瓷的微观结构。结果表明:通过工艺条件的控制可得到由长柱状β-Si3N4晶粒构成的显微结构;当烧结温度为 1750 ℃、保温时间为 4 h、烧结气压为 0.9 MPa、烧结助剂添加量为 6% (质量分数)、Al2O3与 Y2O3质量比为 1:1 时,β-Si3N4晶粒的长径比达到 12 以上  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号