首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optimizing cleaning schedules for refinery preheat trains requires a robust and reliable simulator, reliable fouling models, and the ability to handle the thermal and hydraulic impacts of fouling. The interaction between thermal and hydraulic effects is explored using engineering analyses and fouling rate laws based on the “threshold fouling” concept; the potential occurrence of a new phenomenon, “thermo-hydraulic channeling” in parallel heat exchangers, is identified. The importance of the foulant thermal conductivity is highlighted. We also report the development of a highly flexible preheat train simulator constructed in MATLAB/Excel. It is able to accommodate variable throughput, control valve operation, and different cost scenarios. The simulator is demonstrated on a network of 14 heat exchangers, where the importance of optimizing the flow split between parallel streams is illustrated.  相似文献   

2.
Fouling is a challenging, longstanding, and costly problem affecting a variety of heat transfer applications in industry. Mathematical models that aim at capturing and predicting fouling trends in shell-and-tube heat exchangers typically focus on fouling inside the tubes, while fouling on the shell side has generally been neglected. However, fouling deposition on the shell side may be significant in practice, impairing heat transfer, increasing pressure drops, and modifying flow paths. In this paper, a new model formulation is presented that enables capturing fouling on the shell side of shell-and-tube heat exchangers including the effect of occlusion of the shell-side clearances. It is demonstrated by means of an industrial case study in a crude oil refinery application. The model, implemented in an advanced simulation environment, is fitted to plant data. It is shown to capture the complex thermal and hydraulic interactions between fouling growth inside and outside of the tubes, the effect of fouling on the occlusion of the shell-side construction clearances, and to unveil the impact on shell-side flow patterns, heat transfer coefficient, pressure drops, and overall exchanger performance. The model is shown to predict the fouling behavior in a seamless dynamic simulation of both deposition and cleaning operations, with excellent results.  相似文献   

3.
Abstract

Heat exchanger fouling has been studied for some time in the petroleum industry. As understanding of fouling dynamics and mitigation methods improves, refinery fouling mitigation strategies are changing. The implications of deposit aging in refinery units have not been addressed in detail: aging refers to where the deposit undergoes physical and chemical conversion over time. In the 2009 Heat Exchanger Fouling and Cleaning conference, Wilson et al. [Ageing: Looking back and looking forward] presented a simple framework illustrating how deposit aging impacts heat exchanger thermal and hydraulic performance. This paper presents insights into deposit aging gained from analysis of refinery monitoring data. Two case studies are presented: (i) one from the Preem refinery in Sweden where stream temperature, flow and gauge pressure measurements indicated a higher deposit thermal conductivity in exchangers located in the hotter section of the preheat train. (ii) US refinery stream temperature, flow and plant cleaning log data, showing an increased resistance to cleaning when deposits are exposed to high temperature for a prolonged period. The use of deposit aging analysis to improve exchanger operation is discussed.  相似文献   

4.
《Applied Thermal Engineering》2007,27(2-3):347-357
In oil refining, heat exchanger networks are employed to recover heat and therefore save energy of the plant. However, many heat exchangers in crude oil pre-heat trains are under high risk of fouling. Under fouling conditions, the thermal performance of heat exchangers is continuously reduced and its supervision becomes an important task. The large number of heat exchangers in pre-heat trains and the change of operation conditions and feedstock charges make the daily supervision a difficult task. This work applies an approach to follow the performance of heat exchangers [M.A.S. Jerónimo, L.F. Melo, A.S. Braga, P.J.B.F. Ferreira, C. Martins, Monitoring the thermal efficiency of fouled heat exchangers – A simplified method, Experimental Thermal and Fluid Science 14 (1997) 455–463] and extends it to monitor the whole train. The approach is based on the comparison of measured and predicted heat exchanger effectiveness. The measured value is computed from the four inlet and outlet temperatures of a heat exchanger unit. The predicted clean and dirty values of effectiveness are calculated from classical literature relations as a function of NTU and of heat capacity ratio (R). NTU and R are continuously adjusted according to mass flow rate changes. An index of fouling is defined for the whole network and the results show the performance degradation of the network with time. The work also suggests that Jerónimo’s index of fouling can be used to estimate the fouling thermal resistance of heat exchangers.  相似文献   

5.
An investigation of variations in outlet temperatures of heat exchangers under fouling was carried out. The simulation of heat exchangers was performed by employing a linear fouling deposit function. The formation of deposits reduces heat exchangers effectiveness. There is inherently a linear nature between outlet and inlet temperatures of heat exchangers. The outlet temperatures can also be affected by up‐stream exchangers serving the same streams, and the up‐stream influence can be transferred in the heat system. The mathematical model of the cleaning cycle was outlined, based on the objective function of minimizing cost in unit operation time. According to the results, some heat exchangers can be given cleaning priority when the system is shut down, in order to maximize economic benefit. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20384  相似文献   

6.
Shell-and-tube heat exchangers are normally designed on the basis of a uniform and constant fouling resistance that is specified in advance by the exchanger user. The design process is then one of determining the best exchanger that will achieve the thermal duty within the specified pressure drop constraints. It has been shown in previous papers [Designing shell-and-tube heat exchangers with velocity-dependant fouling, 34th US National Heat Transfer Conference, 20–22 August 2000, Pittsburg, PA; Designing shell-and-tube heat exchangers with velocity-dependant fouling, 2nd Int. Conf. on Petroleum and Gas Phase Behavior and Fouling, 27–31 August 2000, Copenhagen] that this approach can be extended to the design of exchangers where the design fouling resistance depends on velocity. The current paper briefly reviews the main findings of the previous papers and goes on to treat the case where the fouling depends also on the local temperatures. The Ebert–Panchal [Analysis of Exxon crude-oil, slip-stream coking data, Engineering Foundation Conference on Fouling Mitigation of Heat Exchangers, 18–23 June 1995, California] form of fouling rate equation is used to evaluate this fouling dependence. When allowing for temperature effects, it becomes difficult to divorce the design from the way the exchanger will be operated up to the point when the design fouling is achieved. However, rational ways of separating the design from the operation are proposed.  相似文献   

7.
Abstract

Parallel branches are commonly observed in industrial heat exchanger networks (HENs). Despite the important relationship between flow distribution and network efficiency, not all parallel branches comprise of flow controllers or not least, flow measurements. When the network is subject to fouling, uncontrolled flow branches can introduce undesired phenomenon such as thermo-hydraulic channeling (THC) [presented at the 2007 HEFC conference; Ishiyama et al., Effect of fouling on heat transfer, pressure drop and throughput in refinery preheat trains]. Recent analysis of crude preheat train heat exchangers has shown the need to use THC models, in particular, for situations where there is insufficient flow measurement data, especially in nonsymmetric branches. This paper revisits the THC model and highlight practical importance of the THC phenomenon through analysis of plant data. The hydraulic aspect of the analysis is strongly linked to the knowledge of deposit thermal conductivity. A case study of a section of a crude refinery HEN is used to illustrate the use of thermo-hydraulic models in data reconciliation to understand flow imbalances caused due to differences in operating conditions and fouling of heat exchangers in each branch of a parallel network.  相似文献   

8.
This paper presents the performance evaluation of heat exchangers of an existing naphtha hydrotreating (NHT) plant. Originally, the NHT plant consisted of six plain tube heat exchangers connected in series. During plant revamps operation, three plain tubes were replaced with the three twisted tube heat exchangers. In this study, the heat exchangers data were collected from the plant before and after installation of the three twisted tube heat exchangers. The data were then analyzed to see the effects of the twisted tube configuration on fouling of heat exchangers and heat transfer. The analysis of the data showed that the twisted tube heat exchangers caused reduction in fouling resistance of tubes and increased the heat transfer. Also, the replacement of the three shells and tube type heat exchangers by the twisted tubes resulted in an increase of feed flow rate by about 7.85%. An economic analysis showed that the simple payback period for the twisted tube heat exchangers is 2.12 years. It can be concluded that considerable benefits in terms of energy and cost savings can be realized through the application of this innovative twisted tube heat exchanger technology in existing or new chemical plants.  相似文献   

9.
Due to hardness of cold water supply in many countries, there is a risk of fouling in domestic hot water (DHW) counterflow plate heat exchangers. The scaling will result in increased resistance to heat transfer, which has negative effects on the economics of the district heating network. A common approach is to clean or change the heat exchanger periodically, which can be expensive if only limited fouling has occurred (unnecessary) or if a higher than expected scaling layer has formed (inefficiency). A better approach is to monitor the state of the heat exchangers and clean them when actually required. This would result in more energy-efficient operation and provide an optimum schedule for heat exchanger cleaning. This can be simple if the heat exchangers are operating under steady-state conditions; however, if large variations in the inlets are experienced, as is the case with the mass flows in DHW heat exchangers, it quickly becomes impossible with standard methods. In this paper it is proposed to monitor the state of the heat exchanger online by using measurements that are easily obtainable under normal operation and applying fast mathematical models to estimate the overall heat transfer coefficient of the heat exchanger. The results show that the methods proposed can be used to detect fouling in DHW heat exchangers.  相似文献   

10.
This paper is concerned with how non-linear physical state space models can be applied to on-line detection of fouling in heat exchangers. The model parameters are estimated by using an extended Kalman filter and measurements of inlet and outlet temperatures and mass flow rates. In contrast to most conventional methods, fouling can be detected when the heat exchanger operates in transient states. Measurements from a clean counterflow heat exchanger are first used to optimize the Kalman filter. Then fouling is considered. The results show that the proposed method is very sensitive, hence well suited for fouling detection.  相似文献   

11.
为了获得开缝布置方式对开缝翅片管换热器传热与阻力特性的影响规律,对5种不同翅片管换热器进行了数值模拟研究,并进行了模化试验验证。结果表明:增加开缝会提高翅片管换热器的传热性能,但阻力也随之增加;与开缝位置相比,开缝数量对开缝翅片管换热器传热与阻力特性的影响更大;在Re=4800~7500日时,开缝翅片管换热器综合流动传热性能 随着Re数的增大而增大;在5种翅片中,开缝翅片的综合流动传热性能高于普通平直翅片;数值模拟与试验结果偏差较小,采用数值模拟方法能够比较准确地分析开缝翅片管换热器的传热与阻力特性。  相似文献   

12.
13.
Compact heat exchangers are very popular due to their effectiveness, small footprint and low cost. In order to protect heat exchangers in dirty applications, coatings can be applied to the heat transfer surfaces to extend effectiveness and minimize fouling. Coating selection is extremely important since the wrong coating can decrease unit effectiveness, cause more fouling, and/or erode the surface.An experimental investigation of coating effectiveness in compact plate heat exchangers is presented. New, cleaned and coated plate heat exchangers are considered in this study. Heat exchangers have been exposed to untreated lake water for various time periods. Transient effectiveness results compare the rate of fouling for coated and uncoated heat exchangers. Additional results compare deposit weight gain at the end of the test period and transient observations of heat transfer surface appearance. All heat exchanger combinations showed some deposit accumulation for the period considered.Results indicate that the thermal performance of the unit decreases with time, resulting in an undersized heat exchanger. For the conditions considered here, uncoated plates accumulate deposits up to 50% faster than coated plates and show a decrease in performance of up to 40%. Surface coating, exposure time, fluid velocity and concentration of particles can affect fouling.  相似文献   

14.
Heat exchangers operating in process industries are fouled during operations and results in decrease in the thermal efficiency of a heat exchanger. Once the thermal efficiency decreases to a minimum acceptable level, cleaning of the equipment becomes necessary to restore the performance. This paper uses C-factor as a tool for investigation of the performance of a heat exchanger due to fouling which consequently gives information regarding the extent of fouling developed on the heat transfer surfaces. The fouling parameters are predicted by measurements of flow rate and pressure drop. In contrast to most conventional methods, the extent of fouling can be detected considering the flow rate and pressure drop when the heat exchanger operates in transient states. The C-Factor is first calculated through out cleaning period and then compared with the clean and the design value. The results show that the proposed tool is very effective in detecting the fouling developed and the corresponding degradation in heat transfer efficiency of a heat exchanger. Hence the results of this work can find applications in predicting the reduction in heat transfer efficiency due to fouling in heat exchangers that are in operation and assist the exchanger operators to plan cleaning schedules.  相似文献   

15.
Fouling in plate‐and‐frame heat exchangers (PHEs) may be defined as the deposition of unwanted material on the heat transfer surface that reduces heat‐transfer and increases the resistance to fluid flow. Once the thermal–hydraulic performance decreases to a minimum acceptable level, cleaning of the equipment has to be done to restore the performance. The decision regarding periodic off‐line maintenance of the heat exchangers is generally based on a thermal–economic performance of the process. In this paper, we discuss a probabilistic maintenance model for PHE by incorporating the risk level and scatter parameter of the four random fouling growth models, namely linear, power law, falling rate and asymptotic models, which are integrated in the dimensionless cost model for a heat exchanger used in a steel plant. All the results are presented in terms of non‐dimensional plots. The results show that there is a strong relationship between tdown and the uptime, particularly in the region where the costs of operation and maintenance are minimum. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
The existence of a `threshold' below which chemical reaction fouling of heat transfer surfaces by crude oil does not occur has been identified by Ebert and Panchal [Fouling Mitigation of Industrial Heat-Exchange Equipment, Begell House, 1997, 451–460] and clearly demonstrated by Knudsen et al. [Understanding Heat Exchanger Fouling and its Mitigation, Begell House, 1999, 265–272]. This phenomenon has important implications for the design and operation of heat exchangers in refinery pre-heat trains used for the processing of crudes. In this paper we show how a consideration of the fouling threshold condition can be incorporated into the design procedures for shell-and-tube heat exchangers. We then proceed to show how fouling can be mitigated through attention to heat exchanger design, particularly the choice of configuration. The cost of improperly designed units, based on the conventional use of `fouling factors', is demonstrated.  相似文献   

17.
It is well known that significant fouling by particulate matter can have a deleterious effect on the performance of enhanced surface heat exchangers, and the same is true for hybrid heat exchangers. Hybrid heat exchangers are heat exchangers that are typically run in dry mode to reject heat. When the ambient conditions require more heat rejection than can be provided by sensible heat transfer, a water pump is turned on and water flows over the fins, and the evaporation of water provides a further cooling effect. Fouling in dry-mode operation is physically similar to that of air-cooled heat exchangers, but in evaporative mode the flow of the water over the coil eliminates the impact of fouling. A hybrid dry cooler heat exchanger of 60 cm × 60 cm frontal area has been installed in a well-instrumented wind tunnel to measure the heat exchanger's performance. Hot water flows through the coil to provide the load, and air flows over the coil to provide cooling. During evaporative mode operation another stream of water flows over the outside face of the coil, adhering mainly to the louvered fins. The louvered fins are specially designed for optimized water flow during wetting mode. The fins are made of aluminum, the tubes are copper, and protection against corrosion is realized by a special E-coating. This coil has been tested clean and fouled with ASHRAE standard dust, for both dry and wet operation. Results are presented for the air-side pressure drop and overall heat transfer conductance of the coil under all conditions for which 50% increases in air-side pressure drop are found under heavy fouling. The influence of fouling on heat transfer is small. Also, using the wetting water to wash the fouling off the coil is investigated and is found to be of some limited utility.  相似文献   

18.
This paper considers the design of cooling systems in the context of piping costs, exchanger costs, pumping costs and its hydraulic and thermal performance. A methodology for designing coolers in the context of both process needs and cooling water system behaviour is introduced. It is recognised that cooling systems need to be flexible. One way of ensuring this is to design a system for the most demanding load and then use bypasses to control performance under reduced load.The hydraulic modelling is based on new formulations of flow resistance for pipes, pipe fittings and equipment items. By using volumetric flow rate rather than velocity as the prime variable it becomes possible to construct hydraulic models for cooling water systems quickly. These calculations then provide predictions of water flows to the individual heat exchangers in the cooling water network. Knowledge of these flows is fundamental to both the design of new coolers and the prediction of the thermal performance of exchangers of known geometry. Previous studies have ignored this aspect of design.  相似文献   

19.
Design of a novel, intensified heat exchanger for reduced fouling rates   总被引:1,自引:0,他引:1  
This paper describes an integrated approach into the design and evaluation of a novel tube bundle heat exchanger that achieves higher heat transfer levels at lower levels of pressure drop, while remaining less susceptible to gas-side fouling. The approach combines laboratory scale experiments with industrial observations and numerical simulations of full-scale heat exchangers to study the thermal, hydraulic and fouling characteristics of tube bundle heat exchangers. Three arrangements are compared and the advantages of the proposed novel arrangement are demonstrated. Enhanced heat transfer rates are combined with reduced pressure drop and gas-side fouling rates through careful design of the shape of the tube cross-section and reduced transverse spacing.  相似文献   

20.
This article describes particulate fouling experiments performed on small-scale and full-scale plate heat exchangers for three different corrugation angles (30 deg, 45 deg and 60 deg). The velocity effect has been studied as well as the particle type and concentration effects. The test duration ranges between 20 and 1,500 h in order to reach asymptotic behavior. The results clearly indicate that the corrugation angle has a major influence on the asymptotic fouling resistance. Increasing the corrugation angle leads to lower values for the fouling resistance. Furthermore, for a given corrugation angle, the asymptotic fouling resistance is inversely proportional to the velocity squared. Finally, the asymptotic fouling resistance is proportional to the particle concentration. Fouling mitigation can be obtained by taking into account at the design stage the heat exchanger geometry and fluid velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号