首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
粉末冶金法炭纤维/Mg复合材料的界面对其力学性能的影响   总被引:1,自引:0,他引:1  
采用表面化学镀镍前后的短炭纤维(Cf)做为增强体,纯镁粉为基体金属,通过粉末冶金法和热挤压制备镁基复合材料.采用SEM-EDS、TEM、XRD和拉伸等测试手段表征短炭纤维增强镁基复合材料的微观形貌、元素组成、物相组成及其力学性能.结果表明:炭纤维在复合材料中分布均匀且沿挤压方向定向排列;采用经过表面化学镀镍处理的短炭纤维与金属镁复合后界面结合状态优良,Mg2Ni物相的存在表明润湿性的改善是通过金属镁与涂层发生反应而实现;对比屈服强度测试值和理论计算值的大小,表明涂层炭纤维增强镁基复合材料的增强机理主要是界面载荷传递效应.  相似文献   

2.
孔亚茹  郭强  张荻 《材料导报》2015,29(9):34-43, 49
颗粒增强铝基复合材料具有较好的比刚度、比强度、抗疲劳、耐热耐磨和辐射屏蔽等优点,广泛应用于航空航天、军工、电子和汽车等领域。在这类材料中,基体-增强体界面的结构与性能对复合材料宏观性能影响显著。综述了颗粒增强铝基复合材料主要的制备方法和应用现状,特别聚焦于界面的结构及其对复合材料宏观性能的影响方式与机制,同时指出了复合材料制备过程中各种因素对材料界面性质的影响。最后,展望了颗粒增强铝基复合材料界面性能研究的发展前景,指出可采用先进的微纳米尺度的测量技术,结合显微结构表征的方法,系统地研究界面性能与结构之间的关系。  相似文献   

3.
在碳纳米管增强镁基(CNTs/Mg)复合材料制备过程中,碳纳米管间极易因范德华力团聚,且碳和镁浸润性差,因此,研究碳纳米管的均匀分散和良好的界面结合对CNTs/Mg复合材料的应用具有重要意义。本文综述了碳纳米管增强镁基(CNTs/Mg)复合材料的制备工艺进展和近年来国内外学者在改善界面结合与碳纳米管化学镀层方面的研究成果,总结了镁基复合材料的界面增强机制,并展望了CNTs/Mg复合材料未来的界面研究发展方向。  相似文献   

4.
使用溶胶2凝胶法在硼酸铝晶须表面制备 ZnAl 2O 4涂层 , 采用挤压铸造法制备了 ZnAl 2O 4涂覆的硼酸铝晶须增强 6061Al 复合材料。研究了 ZnAl 2O 4涂覆对复合材料界面润湿性、 室温拉伸性能以及高温热暴露后界面热稳定性的影响。试验结果表明: 纳米 ZnAl 2O 4涂覆能够明显提高复合材料的界面润湿性 , 从而提高复合材料的室温拉伸性能; 均匀的 ZnAl 2O 4涂覆能有效地阻碍界面反应 , 使复合材料具有良好的热稳定性能。研究了涂覆对复合材料在铸态及高温热暴露后拉伸断裂行为的影响。未涂覆硼酸铝晶须增强的铝基复合材料在拉伸变形过程中晶须以折断为主 , ZnAl 2O 4涂覆硼酸铝晶须增强的铝基复合材料在拉伸变形过程中晶须以拔出为主。  相似文献   

5.
提出液态浸渗法为晶须增强铝基复合材料的主要制备工艺,且基体与增强体的浸润程度是制造复合材料使其达到理想结构强度的关键,是反映界面性能的重要因素;介绍了在制备复合材料的过程中,润湿性的表征、实验方法及改善铝合金基体与增强体晶须润湿性的几种主要方式,并分析了这几种方式的优缺点;最后提出通过合适的工艺对晶须进行涂层处理,能够有效改善晶须与基体之间的润湿性,提高铝基复合材料的力学性能。  相似文献   

6.
SiCp/Al复合材料具备一系列优异的物理性能,是航空航天、电子封装、装备、核电、汽车、轨道交通等国家重大需求和国民经济装备制造所需的关键材料.但是,工业精密仪器关键零部件对SiCp/Al复合材料的性能要求相对较高,导致复合材料在诸多高端领域的应用受到了严重限制,因而提升SiCp/Al复合材料的整体性能是当前亟需解决的重要难题.对于给定的增强体与基体,界面相具有的微观结构和物化性质是影响SiCp/Al复合材料性能的决定因素.然而,界面相在形成过程中通常会出现润湿性差、结构缺陷多以及生成不良界面产物等问题,对SiCp/Al复合材料的性能产生了严重的负面影响.因此,有效实现界面的可控设计成为提升复合材料性能的关键.根据近几年关于SiCp/Al复合材料界面调控的研究工作来看,增强体颗粒表面改性在抑制增强体与基体之间的相互扩散以及减缓化学反应速率等方面发挥着重要作用,而表面改性处理的方式通常包括酸洗、高温氧化和添加涂层等.在基体中添加合金元素能够有效降低铝液的表面张力,改善SiCp/Al复合材料界面相的润湿性,同时可抑制不良界面反应的发生.目前合金化处理添加的元素通常包括Mg、Si、Cr、Ti、Fe等.在SiCp/Al复合材料的制备过程中,烧结温度、保温时间、冷却速率、成型压力、球磨时间以及烧结气氛等成型工艺参数均会影响界面的反应程度,因而对成型工艺的优化改进同样能够有效调控复合材料的界面信息,以实现对SiCp/Al复合材料性能的提升.本文结合SiCp/Al复合材料界面相具有的微观结构和物化性质,从增强体颗粒表面改性、基体合金化和成型工艺优化改进三个角度综述了SiCp/Al复合材料界面调控的研究现状,并对其未来发展的整体趋势进行了展望.  相似文献   

7.
镁基复合材料具有极强的设计性,有望满足航空航天、军工产品制造以及电子封装等领域对低密度、高强度和高刚度材料的需求。但是,现在镁基复合材料的性能还有许多问题需要解决,最突出的是增强体的均匀分散和界面问题。本文综述了镁基复合材料的组成及其各自的作用,分析了制约高性能镁基复合材料的增强体分散和界面优化以及目前镁基复合材料力学性能的局限性,展望了镁基复合材料的设计新思路和发展趋势。  相似文献   

8.
采用S35高强型聚酰亚胺(PI)纤维作为增强体,热塑性树脂作为基体,采用热压工艺制备了织物结构和正交单向无纬(UD)结构复合材料靶板,通过弹道极限速度测试和背部变形测试,研究了增强体结构和界面结合强度对PI纤维增强热塑性树脂基复合材料防弹性能的影响。结果表明:高强型聚酰亚胺纤维表现出了优异的防弹性能;UD结构靶板更适用于防铅芯弹;织物结构靶板更适用于防破片;当界面剥离强度由5.45N/cm提高到26.44N/cm时,剥离后界面处的纤维表面形貌的破坏程度逐渐增加。当侵彻体为5.6g铅芯弹时,随着界面剥离强度的提高,复合材料靶板的防弹性能呈现出先提高后降低的趋势;并且靶板的背部变形逐渐减小,进一步证明了界面结合强度对复合材料靶板防弹性能的影响。  相似文献   

9.
李坤  石南林  孙超 《材料导报》2005,19(Z2):425-427
碳纤维增强镁基(碳/镁)复合材料是一类非常有价值的结构材料,在航空航天、汽车等行业有很大的应用前景.综述了碳/镁复合材料的界面结合状况和界面结合的改善措施,并对碳/镁复合材料的现状及发展进行了展望.  相似文献   

10.
颗粒增强镁基复合材料的研究现状及发展趋势   总被引:35,自引:2,他引:33  
综述了颗粒增强镁基复合材料的研究概况,着重介绍了颗粒增强镁基复合材料的制备技术,界面行为和制备热力学与动力学三大研究热点,另外,对颗粒增强镁基复合材料的增强机理及常温力学性能作了简单介绍,最后,对颗粒增强镁基复合材料的研究方向进行了一些看法和展望,指出原位颗粒增强镁基复合材料的制备技术交城为制备镁基复合材料的发展趋势,镁基复合材料由于具有高的比强度,比模量和良好的耐磨性、耐高温性能和减震性能,在航空航天,特别是汽车工业具有在的应用前景和广阔的市场。  相似文献   

11.
连续碳化硅纤维(SiCf)由于具有比强度、比模量高,耐磨性、热稳定性好等性能优点,常作为增强体制备SiC纤维增强钛基复合材料。与钛合金基体相比,其具有密度更低、强度更高、疲劳蠕变性能大幅提升等优点,但横向性能却明显下降。因此,该类材料常被设计制作成单向增强性部件,广泛应用在航空航天等领域,如发动机的传动轴、整体叶环、盘类及风扇叶片等多种复合材料的结构件。碳化硅纤维增强钛基复合材料的性能主要由碳化硅纤维的性能、基体性能及纤维与基体之间的结合界面性能决定。目前批量生产的SiC纤维性能较差,界面结合状态与复合材料性能之间关系的研究开展较少,还不能为钛基复合材料构件设计提供足够的数据支持。因此,近年来研究者们主要从SiCf/Ti基复合材料力学行为的研究角度出发,探究不同基体及纤维类型、复合材料制备工艺方法、界面特性及产物对SiCf/Ti基复合材料界面结合力及破坏机制的影响,获得了大量有价值的数据,以期开发出成本低、产物稳定性好、可批量生产SiCf/Ti基复合材料的制造工艺方法。目前较为成熟的碳化硅纤维有英国DERA-Sigma公司提供的Sigma系列SiCf及美国Textron公司提供的SCS系列SiCf,后者强度最高达到6 200 MPa。SiCf/Ti基复合材料的制备工艺包括金属箔-纤维-金属箔工艺(FFF)、单层带工艺(MT)、基体-涂层纤维工艺(MCT)等,制备复合材料的工艺根据零部件的用途来定,FFF适用于制备板材等大尺寸构件,MCT适用于制备叶环、轴、管、叶片等复杂结构件。界面是增强体与基体之间的纽带和桥梁,界面结构设计、界面反应控制及反应产物均影响着界面的力学特性。在SiCf/Ti基复合材料的纤维和基体之间添加过渡层能够减缓它们之间的相互扩散及化学反应,过渡层选用反应层和惰性涂层组成的双层涂层较好。界面反应产物受涂层成分、基体组织、复合和热处理工艺、环境因素等的影响,增强纤维及基体性能、优选制备工艺、控制界面反应及产物有利于提高复合材料的力学性能。本文总结了连续SiC纤维(SiCf)增强钛基复合材料的应用研究现状,详述了SiCf/Ti基复合材料的钛合金基体材料、SiCf的种类及性能,SiCf与SiCf/Ti基复合材料的制备方法,分析了SiCf/Ti基复合材料界面结构设计及反应产物,阐明了界面力学特性与复合材料性能的关系,指出国内SiCf/Ti基复合材料发展的重点应放在高性能SiC纤维的研究与开发、界面层设计及界面与性能的关系以及复合材料分析检测手段三个方面,为SiCf/Ti基复合材料的制备及其今后的实际应用提供了参考。  相似文献   

12.
铝基复合材料增强体涂层与界面   总被引:4,自引:0,他引:4  
基体与增强体间的界面对金属基复合材料的性质起着重要的作用。为改善复合材料增强体与基体合金的浸润性,避免有害界面产物的形成,往往通过增强体表面涂层处理加以解决。本文综述了增强体涂层种类、涂覆方法及其对复合材料的界面和性能的影响。  相似文献   

13.
采用简单的电热板在空气气氛中、430℃加热氧化Fe片以及沉积在硅基片上的Fe膜,在Fe基体表面分别制备出了一维α-Fe2O3纳米线和纳米带,并研究了不同Fe基体热氧化制备的纳米结构的场发射特性。结果表明:Fe片和Fe膜热氧化获得的α-Fe2O3纳米结构的开启电场分别为14.5V/μm和13.3V/μm;α-Fe2O3纳...  相似文献   

14.
席小鹏  王快社  王文  彭湃  乔柯  余良良 《材料导报》2018,32(21):3814-3822
铝合金作为现代工程和高新技术领域发展的关键材料之一,具有密度小、比强度和比刚度高、耐蚀性好等特点。通过在铝基体中添加增强相颗粒,制备得到的颗粒增强铝基复合材料既有铝合金良好的强度、韧性、易成形性等特点,又有颗粒的高强、高模等优点,是近年来应用最广的一类金属基复合材料。 目前,制备铝基复合材料的方法主要有粉末冶金法、铸造以及超声波法等,但这些方法在制备过程中需要较高的温度,颗粒与金属基体容易发生不良的界面反应,从而影响界面结合效果,降低复合材料的性能。搅拌摩擦加工(FSP)作为一种新型的固相加工技术,可同时实现材料微观组织的细化、致密化和均匀化。目前,FSP直接法已在铝基复合材料制备方面取得应用,主要是将增强相颗粒通过打盲孔或开槽的方式预置在金属基体内再进行FSP,进而制备出高致密度的颗粒增强铝基复合材料。因为FSP过程的温度低,颗粒与铝基体不会发生界面反应,所以该方法也被用于制备具有形状记忆效应(SME)的铝基功能复合材料。 近年研究结果表明,颗粒相对FSP制备的铝基复合材料晶粒细化起到显著作用,这有助于提高复合材料的拉伸强度、显微硬度及疲劳强度等力学性能。随着颗粒含量的增加和颗粒尺寸的减小,复合材料的力学性能得以增强。再者,减小颗粒尺寸有利于改善颗粒与基体之间的结合。另外,通过优化搅拌头的结构、形状和尺寸,以及FSP工艺参数,已经可以实现加工后颗粒相在基体中的均匀分布。 鉴于搅拌摩擦加工(FSP)直接法在制备颗粒增强铝基复合材料方面所具备的短流程、高效能以及基体与增强相颗粒界面无杂质等优势,本文对目前FSP直接法制备颗粒增强铝基复合材料的最新研究现状进行了总结。主要综述了FSP制备颗粒增强铝基复合材料过程中颗粒的含量、类型及尺寸对复合材料组织与力学性能的影响,并对颗粒分布均匀性以及颗粒与铝基体的界面问题做了阐述。文章最后深入分析了当前研究中的不足之处并展望了未来的研究方向。  相似文献   

15.
Behaviour of coatings on reinforcements in some metal matrix composites   总被引:2,自引:0,他引:2  
Coating on reinforcements affects the interface bonding of a composite, and is therefore usually used for improving the composite's properties. The behaviour of SiC coating on carbon fibre in reinforced aluminium metal castings, Fe on carbon fibre-reinforced copper and alumina coating on K2O · 6TiO2 whisker-reinforced aluminium composites were investigated, respectively, by modern techniques such as TEM, SEM etc. with the goal of controlling the interfacial interaction and wettability of reinforcement with the matrices. SiC coating produced by a polycarbosilane solution process effectively improved the strength because it successfully controlled oxidation of the carbon fibres themselves and the harmful reaction between the carbon fibres and molten aluminium during the fabrication process and heating process of the composites. The metal coating, Fe, made by electrical plating, strengthened the bonding of carbon fibres with copper by changing the bonding state of the interface from a mechanical one to a partly chemical one. Therefore the strengths of the resulting composites were improved. The alumina coating on K2O · 6TiO2 also controlled the diffusion of the K element from the whiskers into the aluminium matrix and altered the reaction with aluminium, and led to the optimization of interfacial bonding between the whiskers and a superior composite.  相似文献   

16.
碳纳米管增强铝基复合材料的界面研究进展   总被引:3,自引:2,他引:1  
汤金金  李才巨  朱心昆 《材料导报》2012,26(11):149-152
碳纳米管以其稳定的结构、优异的力学性能,成为复合材料的理想增强相。其增强效果受多方面因素影响,界面是决定其增强效果的关键因素之一,也是金属基复合材料的研究重点。简要介绍了碳纳米管增强铝基(CNTs/Al)复合材料的界面结合机制及界面对复合材料性能的影响,评述了热膨胀系数、制备方法、碳纳米管纯度等多种因素对CNTs/Al复合材料界面的影响,并提出了改善界面的方法。  相似文献   

17.
碳纳米管被认为是下一代最理想的铝基复合材料增强相,其与铝基体的界面结合情况是影响复合材料性能的重要因素之一。介绍了碳纳米管与铝基体界面反应条件以及界面反应产物对复合材料性能的影响,从碳纳米管表面金属包裹、碳纳米管表面化学键的修饰、制备工艺参数等方面综述了界面优化的方法,并讨论了界面优化对碳纳米管增强效率的影响。  相似文献   

18.
碳纳米管(CNT)优异的力学性能使其成为复合材料优选的增强体。CNT/聚合物复合材料的力学性能主要受其界面结合性能的影响。综述了CNT/聚合物复合材料界面结合性能的研究方法和研究现状。对CNT/聚合物复合材料界面结合性能的研究,实验上采用微观表征技术、拉曼光谱分析技术和纳米力学拔出法,分子模拟方法则是通过对CNT施加位移或外力模拟CNT从聚合物基体中的抽拔过程。概述了聚合物的类型、晶态结构以及CNT的手性、功能化处理等因素对CNT/聚合物复合材料界面结合性能的影响,并展望了CNT/聚合物复合材料界面结合性能未来研究的重点方向。  相似文献   

19.
[1]S.Ryu, J.Kaneko and M.Suganuma: J. Japan Inst. Metals, 1997, 61, 1160. [2]H.Hu: J. Mater. Sci., 1998, 33, 1579. [3]B.L.Mordike, K.U.Kainer and B.Sommer: in Proc.3rd Inter. Magnesium Conf., Manchester, UK, 1996, 637. [4]S.Kamado, T.Shikawa, T.Wada and Y.Kojima: J. Japan. Inst. Light Metal, 1996, 46, 71. [5]M.Vedani, E.Gariboldi, G.Silva and C.Di. Gregorio: Mater. Sci. Tech., 1994, 10, 132. [6]B.R.Henriksen and T.E.Johnsen: Mater. Sci. Tech.,1990, 6, 857. [7]Mingyi ZHENG: Ph.D. Thesis, Harbin Institute of Technology, 1999. (in Chinese)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号