首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Double-perovskite oxides, LnBaCo2O5+x (LnBCO) (Ln = Pr, Nd, Sm, and Gd), are prepared using a solid-state reaction as cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The performances of LnBCO-Ce0.8Sm0.2O1.9 (SDC) composite cathodes were investigated for IT-SOFCs on La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) electrolyte. The thermal expansion coefficient can be effectively reduced in the case of the composite cathodes. No chemical reactions between LnBCO cathodes and SDC electrolyte, and LnBCO and LSGM are found. The electrochemical performances of LnBCO cathodes and LnBCO-SDC composite cathodes decrease with decreasing Ln3+ ionic radii, which is closely related to the decrease of the electrical conductivity and fast oxygen diffusion property. The area specific resistances of the LnBCO cathodes and LnBCO-SDC composite cathodes on LSGM electrolyte are all lower than 0.13 Ω cm2 and 0.15 Ω cm2 at 700 °C, respectively. The maximum power densities of single-cell consisted of LnBCO-SDC composite cathodes, LSGM electrolyte, and Ni-SDC anode achieve 758-608 mW cm−2 at 800 °C with the change from Ln = Pr to Gd, respectively. These results indicate that LnBCO-SDC composite oxides are candidates as a promising cathode material for IT-SOFCs.  相似文献   

2.
La0.8Sr0.2Ga0.8Mg0.2O3 (LSGM) deposit in free standing planar shape was prepared by atmospheric plasma spraying (APS) to examine the coating microstructure and electrical conductivity to aim at applying APS LSGM to solid oxide fuel cells (SOFCs). The electrical conductivity of the plasma-sprayed LSGM coating was investigated. The coating microstructure was characterized by X-ray diffraction and scanning electron microscopy. The result showed that a fraction amorphous phase was present in the as-sprayed LSGM deposit, which starts to recrystallize at the temperature of 785 °C. The electrical conductivities of the LSGM with recrystallization treatment are 0.04 and 0.09 S cm−1 at 1000 °C at the directions perpendicular and parallel to the coating surfaces, respectively. The electrical conductivity at perpendicular direction is about one-tenth that of sintered bulk at 1000 °C. This result is due to the lamellar structure feature with the limited interface bonding which dominates the electrical conductivity of APS coatings. The activation energy for ion conduction within APS-deposited LSGM deposit depends on temperature range. The change of activation energy indicates that the ion transportation dominant changes with temperature.  相似文献   

3.
The highly phase-pure perovskite electrolyte, La0.9Sr0.1Ga0.8Mg0.115Co0.085O2.85 (LSGMCO), was prepared by means of glycine–nitrate process (GNP) for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The perovskite phase evolution, sintering, electrical conductivity and electrochemical performance of LSGMCO were investigated. The results show that the highly phase-pure perovskite electrolyte LSGMCO can be obtained after calcining at 1150 °C. The sample sintered at 1450 °C for 20 h in air exhibited a better sinterability, and the relative density of LSGMCO was higher than 95%. The stoichiometric indexes of the elements in the sintered sample LSGMCO determined experimentally by EDS were in good agreement with the nominal composition. The electrical conductivities of the sample were 0.094 and 0.124 S· cm−1 at 800 °C and 850 °C in air, respectively. The ionic conduction of the sample was dominant at high temperature with the higher activation energies. While at lower temperature the electron hole conduction was predominated with the lower activation energies. The maximum power densities of the single cell fabricated with LSGMCO electrolyte with Ce0.8Sm0.2O1.9 (SDC) interlayer, SmBaCo2O5+x cathode and NiO/SDC anode achieved 643 and 802 mW cm−2 at 800 °C and 850 °C, respectively.  相似文献   

4.
La0.7Ca0.3CrO3 (LCC)-Ce0.8Gd0.2O1.9 (GDC) composites have been investigated as symmetrical electrodes for solid-oxide fuel cells (SOFCs) on La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) electrolyte, where there is no interlayer between anode and electrolyte. LCC oxide is chemically compatible with GDC and LSGM electrolyte at temperatures up to 1200 °C. The electrical conductivity of the LCC-GDC composites decreases with increasing GDC content. The best electrical conductivities of 18.64 S cm−1 in air and 1.86 S cm−1 in H2 at 850 °C are achieved for an 80 wt% LCC-20 wt% GDC (LCC-GDC20) composite. The thermal expansion coefficients of the LCC-GDC composites increase with increasing GDC content, and are very close to that of the LSGM electrolyte. A cell with a 0.3 mm thick LSGM electrolyte and LCC-GDC20 symmetrical electrodes displays the highest electrochemical performance. The maximum power density is 573 mW cm−2 in dry H2 and 333 mW cm−2 in humidified commercial city gas containing H2S at 900 °C, respectively. These results suggest that the LCC-GDC20 composite can potentially serve as an electrode for symmetrical SOFCs operated on H2 and commercial city gas containing H2S.  相似文献   

5.
SmBaCo2O5+x (SBCO), an oxide with double-perovskite structure, has been developed as a novel cathode material for intermediate-temperature solid-oxide fuel cells (IT-SOFCs). The electrical conductivity of an SBCO sample reaches 815–434 S cm−1 in the temperature range 500–800 °C. XRD results show that an SBCO cathode is chemically compatible with the intermediate-temperature electrolyte materials Sm0.2Ce0.8O1.9 (SDC) and La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM). The polarization resistances of an SBCO cathode on SDC and LSGM electrolytes are 0.098 and 0.054 Ω cm2 at 750 °C, respectively. The maximum power densities of a single cell with an SBCO cathode on SDC and LSGM electrolytes reach 641 and 777 mW cm−2 at 800 °C, respectively. The results of this study demonstrate that the double-perovskite structure oxide SBCO is a very promising cathode material for use in IT-SOFCs.  相似文献   

6.
Layered perovskite oxide NdBa0.5Sr0.5Co2O5+x is investigated as a cathode material for intermediate-temperature solid oxide fuel cells. The NBSC cathode is chemically compatible with the electrolyte La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) at temperatures below 1000 °C. It is metallic in nature and the maximum and minimum conductivities are 1368 S cm−1 at 100 °C and 389 S cm−1 at 850 °C. The area specific resistance (ASR) value for the NBSC cathode is as low as 0.023 Ω cm2 at 850 °C. The electrolyte-supported fuel cell generates good performance with the maximum power density of 904, 774 and 556 mW cm−2 at 850, 800 and 750 °C, respectively. Preliminary results indicate that NBSC is promising as a cathode for IT-SOFCs.  相似文献   

7.
An anode-supported La0.9Sr0.1Ga0.8Mg0.2O3 − δ (LSGM) electrolyte membrane is successfully fabricated by simple, cost-effective spin coating process. Nano-sized NiO and Ce0.8Gd0.2O3 − α (GDC) powders derived from precipitation and citric-nitrate process, respectively, are used for anode support. The dense and uniform LSGM membrane of ca. 50 μm in thickness is obtained by sintering at relatively low temperature 1300 °C for 5 h. A single cell based on the as-prepared LSGM electrolyte membrane exhibits desirable high cell performance and generates high output power densities of 760 mW cm−2 at 700 °C and 257 mW cm−2 at 600 °C, respectively, when operated with humidified hydrogen as the fuel and air as the oxidant. The single cell is characterized by field-emission scanning electron microscope (FESEM), X-ray diffraction (XRD) and electrochemical AC impedance. The results demonstrate that it is feasible to fabricate dense LSGM membrane for solid oxide fuel cell by this simple, cost-effective and efficient process. In addition, optimized anode microstructure significantly reduces polarization resistance (0.025 Ω cm2 at 700 °C).  相似文献   

8.
Electrolytes based on Sc2O3–ZrO2 exhibit the highest ionic conductivity of zirconia based systems, however, stabilization of the electrochemical properties at operational temperatures, 600–1000 °C, are needed before implementation into SOFCs. Trace additions of Bi2O3 are a known sintering aid for zirconia systems. Crystal structures, electrical properties and long-term stability of Bi2O3-doped 10ScSZ systems were investigated. The addition of more than 1.0 mol% Bi2O3 resulted in suppression of the rhombohedral to cubic phase transformation at 600 °C and cubic phase stabilization at room temperature. The ionic conductivity of 10ScSZ was also improved by Bi2O3 additions. A maximum conductivity of 0.034 S cm−1 at 700 °C was observed in 2 mol% Bi2O3-doped 10ScSZ sintered at 1300 °C. No phase change was observed in 10ScSZ after annealing at 1000 °C. A certain amount of monoclinic phase, and dramatic conductivity decrease, were observed in Bi2O3-doped samples sintered below 1200 °C after annealing. However, 10ScSZ and 2 mol% Bi2O3-doped 10ScSZ sintered at 1300 °C show no significant conductivity degradation with annealing. Samples with more than 1 mol% Bi2O3 and sintered above 1300 °C resulted in good ionic conductivity and stability.  相似文献   

9.
BaCo0.7Fe0.2Nb0.1O3−δ (BCFN) has been synthesized and characterized as cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs) using La0.8Sr0.2Ga0.83Mg0.17O3−δ (LSGM) electrolyte. X-ray diffraction results show that pure cubic BCFN perovskite phase can be obtained at 950 °C through solid state reactions of BaCO3, Co3O4, Fe2O3 and Nb2O5. The electrical conductivity of BCFN increases with the increase in oxygen partial pressure, indicating that BCFN is a p-type semiconductor. The polarization resistance of the BCFN cathode with LSGM electrolyte is only 0.06 Ω cm2 at 750 °C in air under open-circuit conditions. The overpotential at a current density of 1 A cm−2 in oxygen was only about 0.04 V at 750 °C. Peak power densities of 550, 770 and 980 mW cm−2 have been achieved on LSGM-electrolyte supported single cells with the configuration of Ni-Gd0.1Ce0.9O1.95|La0.4Ce0.6O2|LSGM|BCFN at 700, 750 and 800 °C, respectively. These results indicate that BCFN is a very promising cathode candidate for IT-SOFCs with LSGM electrolyte.  相似文献   

10.
Cathode material Pr2Ni0.6Cu0.4O4 (PNCO) for intermediate-temperature solid oxide fuel cells (IT-SOFCs) is synthesized by a glycine-nitrate process using Pr6O11, NiO, and CuO powders as raw materials. X-ray diffraction analysis reveals that nanosized Pr2Ni0.6Cu0.4O4 powders with K2NiF4-type structure can be obtained from calcining the precursors at 1000 °C for 3 h. Scanning electron microscopy shows that the sintered PNCO samples have porous microstructure with a porosity of more than 30% and grain size smaller than 2 μm. A maximum conductivity of 130 S cm−1 is obtained from the PNCO samples sintered at 1050 °C. A single fuel cell based on the PNCO cathode with 30 μm Sm0.2Ce0.8O1.9 (SCO) electrolyte film and a 1 mm NiO-SCO anode support is constructed. The ohmic resistance of the single Ni-SCO/SCO/PNCO cell is 0.08 Ω cm2 and the area specific resistance (ASR) value is 0.19 Ω cm2 at 800 °C. Cell performance was also tested using humidified hydrogen (3% H2O) as fuel and air as oxidant. The single cell shows an open circuit voltage of 0.82 V and 0.75 V at 700 °C and 800 °C, respectively. Maximum power density is 238 mW cm−2 and 308 mW cm−2 at 700 °C and 800 °C, respectively. The preliminary tests have shown that Pr2Ni1−xCuxO4materials can be a good candidate for cathode materials of IT-SOFCs.  相似文献   

11.
PrBa0.5Sr0.5Co2O5+x (PBSC) oxides have been evaluated as cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs) with Ce0.9Gd0.1O1.95 (GDC) and La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) as electrolytes. XRD results show that PBSC cathode is chemically compatible with the intermediate-temperature electrolyte materials GDC and LSGM. The maximum electrical conductivity is 1522 S cm−1 at 100 °C and its value is higher than 581 S cm−1 over the whole temperature range investigated. Microstructures show that the contact between PBSC and LSGM is better than that between PBSC and GDC. The area-specific resistances (ASRs) of PBSC cathode on GDC and LSGM electrolytes are 0.048 and 0.027 Ωcm2 at 800 °C, respectively. The electrolyte-supported (thickness of electrolyte is 300 μm) fuel cells generate good performance with the maximum power densities of 617 mW cm−2 on GDC electrolyte and 1021 mW cm−2 on LSGM electrolyte at 800 °C. All results demonstrate that PBSC oxide is a very promising cathode material for application in IT-SOFCs and this cathode based on LSGM electrolyte obtained better performance than on GDC electrolyte.  相似文献   

12.
The effect of the Co doping on the structure, electrical conductivity and electrochemical properties of Sr0.8Ce0.2MnO3−δ was investigated. The Co doping decreased the sintering temperature by about 100 °C and cubic structure was synthesized for Sr0.8Ce0.2Mn0.8Co0.2O3−δ. The electrical conductivity of Sr0.8Ce0.2Mn0.8Co0.2O3−δ reached 102 S cm−1 at 700 °C, which was sufficient to provide low ohmic losses at the cathode. In comparison with Sr0.8Ce0.2MnO3−δ, the area-specific resistance of Sr0.8Ce0.2Mn0.8Co0.2O3−δ was 0.10 Ω cm2 at 750 °C, which was about 20 times lower than that of Sr0.8Ce0.2MnO3−δ. While the exchange current density i0 of Sr0.8Ce0.2Mn0.8Co0.2O3−δ was 0.49 A cm−2 at 800 °C, that for Sr0.8Ce0.2MnO3−δ was 0.11 A cm−2. The results show that the Sr0.8Ce0.2Mn0.8Co0.2O3−δ cathode had high catalytic activity for oxygen reduction reaction in the temperature range of 700–800 °C.  相似文献   

13.
Double-perovskites YBaCo2−xFexO5+δ (YBCF, x = 0.0, 0.2, 0.4 and 0.6) are synthesized with a solid-state reaction and are assessed as potential cathode materials for utilization in intermediate-temperature solid oxide fuel cells (IT-SOFCs) on the La0.9Sr0.1Ga0.8Mg0.115Co0.085O2.85 (LSGMC) electrolyte. The YBCF materials exhibit chemical compatibility with the LSGMC electrolyte up to a temperature of 950 °C. The conductivity of the YBCF samples decreases with increasing Fe content, and the maximum conductivity of YBCF is 315 S cm−1 at 325 °C for the x = 0.0 sample. A semiconductor-metal transition is observed at about 300-400 °C. The thermal expansion coefficient of the YBCF samples increases from 16.3 to 18.0 × 10−6 K−1 in air at temperatures between 30 and 900 °C with increase in Fe content. The area-specific resistances of YBCF cathodes at x = 0.0, 0.2 and 0.4 on the LSGMC electrolyte are 0.11, 0.13 and 0.15 Ω cm2 at a temperature of 700 °C, respectively. The maximum power densities of the single cells fabricated with the LSGMC electrolyte, Ce0.8Sm0.2O1.9 (SDC) interlayer, NiO/SDC anode and YBCF cathodes at x = 0.0, 0.2 and 0.4 reach 873, 768 and 706 mW cm−2, respectively. This study suggests that the double-perovskites YBCF (0 ≤ x ≤ 0.4) can be potential candidates for utilization as IT-SOFC cathodes.  相似文献   

14.
This study presents the electrochemical performance of (Ba0.5Sr0.5)0.9Sm0.1Co0.8Fe0.2O3−δ (BSSCF) as a cathode material for intermediate temperature solid oxide fuel cells (IT-SOFC). AC-impedance analyses were carried on an electrolyte supported BSSCF/Sm0.2Ce0.8O1.9 (SDC)/Ag half-cell and a Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF)/SDC/Ag half-cell. In contrast to the BSCF cathode half-cell, the total resistance of the BSSCF cathode half-cell was lower, e.g., at 550 °C; the values for the BSSCF and BSCF were 1.54 and 2.33 Ω cm2, respectively. The cell performance measurements were conducted on a Ni-SDC anode supported single cell using a SDC thin film as electrolyte, and BSSCF layer as cathode. The maximum power densities were 681 mW cm−2 at 600 °C and 820 mW cm−2 at 650 °C.  相似文献   

15.
Sr2Fe4/3Mo2/3O6 has been synthesized by a combustion method in air. It shows a single cubic perovskite structure after being reduced in wet H2 at 800 °C and demonstrates a metallic conducting behavior in reducing atmospheres at mediate temperatures. Its conductivity value at 800 °C in wet H2 (3% H2O) is about 16 S cm−1. This material exhibits remarkable electrochemical activity and stability in H2. Without a ceria interlayer, maximum power density (Pmax) of 547 mW cm−2 is achieved at 800 °C with wet H2 (3% H2O) as fuel and ambient air as oxidant in the single cell with the configuration of Sr2Fe4/3Mo2/3O6|La0.8Sr0.2Ga0.83Mg0.17O3 (LSGM)| La0.6Sr0.4Co0.2Fe0.8O3 (LSCF). The Pmax even increases to 595 mW cm−2 when the cell is operated at a constant current load at 800 °C for additional 15 h. This anode material also shows carbon resistance and sulfur tolerance. The Pmax is about 130 mW cm−2 in wet CH4 (3% H2O) and 472 mW cm−2 in H2 with 100 ppm H2S. The cell performance can be effectively recovered after changing the fuel gas back to H2.  相似文献   

16.
Zinc-doped barium strontium cobalt ferrite (Ba0.5Sr0.5Co0.2−xZnxFe0.8O3−δ (BSCZF), x = 0, 0.05, 0.1, 0.15, 0.2) powders with various proportions of zinc were prepared using the ethylenediamine tetraacetic acid (EDTA)-citrate method with repeated ball-milling and calcining. They were then evaluated as cathode materials for solid oxide fuel cells at intermediate temperatures (IT-SOFCs) using XRD, H2-TPR, SEM, and electrochemical tests. By varying the zinc doping (x) from zero to 0.2 (as a substitution for cobalt which ranged from zero to 100%), it was found that the lowest doping of 0.05 (BSCZF05) resulted in the highest electrical conductivity of 30.7 S cm−1 at 500 °C. The polarization resistances of BSCZF05 sintered at 950 °C were 0.15 Ω cm2, 0.28 Ω cm2 and 0.59 Ω cm2 at 700 °C, 650 °C and 600 °C, respectively. The resistance decreased further by about 30% when Sm0.2Ce0.8O2−δ (SDC) electrolyte particles were incorporated and the sintering temperature was increased to 1000 °C. Compared to BSCF without zinc, BSCZF experienced the lowest decrease in electrochemical properties when the sintering temperature was increased from 950 °C to 1000 °C. This decrease was due to an increase in thermal stability and a minimization in the loss of some cobalt cations without a decrease in the electrical conductivity. Using a composite cathode of BSCZF05 and 30 wt.% of SDC, button cells composed of an Ni-SDC support with a 30 μm dense SDC membrane exhibited a maximum power density of 605 mW cm−2 at 700 °C.  相似文献   

17.
The double perovskite Sr2CoMoO6−δ was investigated as a candidate anode for a solid oxide fuel cell (SOFC). Thermogravimetric analysis (TGA) and powder X-ray diffraction (XRD) showed that the cation array is retained to 800 °C in H2 atmosphere with the introduction of a limited concentration of oxide-ion vacancies. Stoichiometric Sr2CoMoO6 has an antiferromagnetic Néel temperature TN ≈ 37 K, but after reduction in H2 at 800 °C for 10 h, long-range magnetic order appears to set in above 300 K. In H2, the electronic conductivity increases sharply with temperature in the interval 400 °C < T < 500 °C due to the onset of a loss of oxygen to make Sr2CoMoO6−δ a good mixed oxide-ion/electronic conductor (MIEC). With a 300-μm-thick La0.8Sr0.12Ga0.83Mg0.17O2.815 (LSGM) as oxide-ion electrolyte and SrCo0.8Fe0.2O3−δ as the cathode, the Sr2CoMoO6−δ anode gave a maximum power density of 1017 mW cm−2 in H2 and 634 mW cm−2 in wet CH4. A degradation of power in CH4 was observed, which could be attributed to coke build up observed by energy dispersive spectroscopy (EDS).  相似文献   

18.
La0.8Sr0.2Ga0.8Mg0.2O2.8 (LSGM8080) powder, showing the highest electrical conductivity among LSGMs of various compositions, is synthesized using the glycine nitrate process (GNP) and used as the electrolyte for an intermediate-temperature solid oxide fuel cell (IT-SOFC). The LDC (Ce0.55La0.45O1.775) powder is synthesized by a solid-state reaction and employed as the material for a buffer layer to prevent the reaction between the anode and electrolyte materials. The LDC also serves as the skeleton material for the anode. An anode-supported single cell with an active area of 1 cm2 is constructed for performance evaluation. A single-cell test is performed at 750 and 800 °C. The maximum power density of the cell 459 and 664 mW cm−2 at 750 and 800 °C, respectively.  相似文献   

19.
Nano-sized Ce0.8Gd0.2O2−δ and Ce0.79Gd0.2Cu0.01O2−δ electrolyte powders were synthesized by the polyvinyl alcohol assisted combustion method, and then characterized by powder characteristics, sintering behaviors and electrical properties. The results demonstrate that the as-synthesized Ce0.8Gd0.2O2−δ and Ce0.79Gd0.2Cu0.01O2−δ possessed similar powder characteristics, including cubic fluorite crystalline structure, porous foamy morphology and agglomerated secondary particles composed of gas cavities and primary nano crystals. Nevertheless, after ball-milling these two powders exhibited quite different sintering abilities. A significant reduction of about 400 °C in densification temperature of Ce0.79Gd0.2Cu0.01O2−δ was obtained when compared with Ce0.8Gd0.2O2−δ. The Ce0.79Gd0.2Cu0.01O2−δ pellets sintered at 1000 °C and the Ce0.8Gd0.2O2−δ sintered at 1400 °C exhibited relative densities of 96.33% and 95.7%, respectively. The sintering of Ce0.79Gd0.2Cu0.01O2−δ was dominated by the liquid phase process, followed by the evaporation-condensation process, Moreover, Ce0.79Gd0.2Cu0.01O2−δ shows much higher conductivity of 0.026 S cm−1 than Ce0.8Gd0.2O2−δ (0.0065 S cm−1) at a testing temperature of 600 °C.  相似文献   

20.
The LSGM(La0.8Sr0.2Ga0.8Mg0.2O3) electrolyte based intermediate temperature solid oxide fuel cells (ITSOFCs) supported by porous nickel substrates with different permeabilities are prepared by plasma spray technology for performance studies. The cell having a porous nickel substrate with a permeability of 3.4 Darcy, an LSCM(La0.75Sr0.25Cr0.5Mn0.5O3) interlayer on the nickel substrate, a nano-structured LDC(Ce0.55La0.45O2)/Ni anode functional layer, an LDC interlayer, an LSGM/LSCF(La0.58Sr0.4Co0.2Fe0.8O3) cathode interlayer and an LSCF cathode current collector layer shows remarkable electric output power densities such as 1270 mW cm−2 (800 °C), 978 mW cm−2 (750 °C) and 702 mW cm−2 (700 °C) at 0.6 V cell voltage under 335 ml min−1 H2 and 670 ml min−1 air flow rates. SEM, TEM, EDX, AC impedance, voltage and power data with related analyses are presented here to support this high performance. The durability test of the cell with the best power performance shows a degradation rate of about 3% kh−1 at the test conditions of 400 mA cm−2 constant current density and 700 °C. Results demonstrate the success of APS technology for fabricating high performance metal-supported and LSGM based ITSOFCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号