首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
为了使Al/AP双组元粉末火箭发动机密度比冲最大化,将燃烧室特征长度由2.31 m增至 12.62 m进行了Al/AP粉末火箭发动机点火测试.采用光谱仪、CCD 相机、CO2 激光点火器等对 Al/AP 混合物在 1.0132 5 × 105 Pa的氮气环境中的点火延迟、燃烧时间、燃烧平稳性等燃烧性能进行了研究.测量了Al颗粒的表观堆积密度.作为一种替代燃料,对镁颗粒也进行了研究.结果表明,增加燃烧室特征长度至 12.62 m 时,可以得到最大燃烧室压强振荡幅度±2 .43%的平稳燃烧性能.含粒径 1μm 铝粉的 Al/AP 混合物其燃烧过程的光强远大于含粒径10μm铝粉的样品,并且其在波长 568 nm 发射光谱的光子数强度超过了光谱仪检测上限(65 000 数).而含粒径10μm铝粉样品燃烧过程的568 nm发射光谱信号出现间断且其全程强度低于 19 036 数.粒径 10μm 铝粉点火延迟时间为粒径1μm铝粉点火延迟时间的3.65 倍,燃烧时间为3.03 倍以上,最大RAlO却比 1μm铝粉少 14.3%,密度低21 .3%,说明粒度小的铝粉具有更好的燃烧性能,但是其堆积密度也更低.虽然Mg/AP的理论比冲为Al/AP的95.6%,但是其堆积密度比粒径1μm铝粉高8%,其点火延迟时间比粒径10μm铝粉短 90.3%.火焰照片也表明镁粉可在很大程度上减少凝相沉积.  相似文献   

2.
以AP和铝粉为原料,采用“AP预处理+表面沉积”两步法工艺制备了以铝粉为“壳”的铝基核壳材料AP/Al;采用SEM-EDS、粒度分析、密度测试等方法表征了AP/Al的表面形貌、元素分布、粒度分布和密度等物理特性,对比测试了铝基核壳材料AP/Al的感度性能、热分解性能、爆热及残渣活性铝含量并与AP/Al物理混合物进行了对比;运用Flynn-Wall-Ozawa方程计算了AP/Al物理混合物及铝基核壳材料AP/Al的分解活化能,并通过高速摄像机记录了铝基核壳材料AP/Al的燃烧特性。结果表明,铝基核壳材料AP/Al是以AP为“核芯”、铝粉为“壳”,密度为2.0485g/cm3的类球形颗粒;相比于物理混合物,铝基核壳材料AP/Al静电火光感度由27.94mJ提高至102.88mJ,AP低温分解和高温分解活化能分别提升10.9和9.0kJ/mol,爆热值未出现明显降低(物理混合物为9298.4J/g,铝基核壳材料AP/Al为9260.6J/g),但铝基核壳材料AP/Al残渣中活性铝质量分数降低90%以上;有别于传统铝粉燃烧的拖拽火焰,铝基核壳材料AP/Al燃烧时,铝液滴溅...  相似文献   

3.
为了研究流化气体对粉末推进剂点火燃烧性能的提高作用,采用CO_2激光点火器和光纤光谱仪相结合的实验方法,研究了不同气氛条件下Al粉的点火燃烧特性。采用光谱信号拟合测温法计算了Al粉在不同气氛环境中的点火温度。结果表明,常压环境下,粒径1μm的Al粉在N_2O和空气氛围下的点火延迟时间分别为10ms和359ms,从点火成功过渡到全面燃烧的时间分别为829ms和1 579ms,说明Al粉在N2O环境中点火阶段的表面异相反应速率与燃烧阶段的反应速率均快于在空气中;粉径1μm的Al粉在N2O和空气环境下的点火温度分别为1 550~1 650K和1 450~1 500K,两者相近,但都明显低于毫米级Al粉的点火温度(2 300K),说明Al粉的点火温度受粒径影响较大。  相似文献   

4.
为进一步了解CMDB推进剂中含铝凝聚相燃烧产物的形成机制及影响因素,对Al/HMX-CMDB推进剂燃烧残渣的形貌、表面成分及粒径分布进行了研究;制备了具有不同HMX/Al质量比(30∶7、22∶15)及不同铝粉粒径(1~2、13、30μm)的4种推进剂样品。采用靶线法测定了推进剂样品在压强为2~18MPa范围内的燃速;在恒压燃烧室中收集了推进剂在1MPa下产生的凝聚相燃烧产物;利用扫描电子显微镜(SEM)和光学显微镜对残渣形貌进行了观测,利用X衍射射线能谱(EDS)对残渣表面成分进行分析,并对残渣粒径进行了统计。结果表明,在2~18MPa下,增加铝粉含量和降低铝粉粒径会使推进剂燃烧效率降低,使铝团聚难以充分燃烧而产生大量残渣;观察到6类粒径大于20μm的球形和不规则形状残渣颗粒,其表面主要由铝和氧化铝构成;对残渣粒径统计表明,使用粒径13μm铝粉并且在其质量分数为7%时产生的残渣粒径较小,而质量分数增至15%时会使残渣粒径增大。  相似文献   

5.
GAP/ADN/nano–Al膏体推进剂的能量特性与激光点火特性   总被引:1,自引:0,他引:1  
采用最小自由能原理方法计算了GAP(聚叠氮缩水甘油醚)/ADN(二硝酰胺铵)/nano–Al推进剂的能量特性,制备了一系列ADN质量分数为8%~38%的GAP/ADN/nano–Al膏体推进剂,采用CO2激光点火的方法研究了4种配方在不同激光功率密度作用下的激光点火特性。结果表明:GAP/ADN/nano–Al膏体推进剂的标准理论比冲(Isp)、特征速度(C*)、燃烧温度(Tc)均随ADN含量增加而依次增大,爆热(Qv)则主要随铝粉含量的增加而增大;GAP/ADN/nano–Al膏体推进剂的点火延迟时间和点火能量总体上随着激光功率密度增加呈现减小的趋势;配方中ADN含量较高时,GAP/ADN/nano–Al膏体推进剂具有较好的激光点火特性。  相似文献   

6.
铝粉-空气混合物的燃烧转爆轰过程   总被引:2,自引:0,他引:2  
利用自行设计的长29.6 m、内径199 mm配有40套喷粉扬尘装置的大型水平爆轰管,研究了细片状铝粉-空气混合物在40 J弱点火条件下火焰从发生到加速、最后实现爆轰转捩的全过程,探讨了铝粉浓度和点火延迟时间对爆轰参数的影响.结果表明,铝粉-空气混合物燃烧转爆轰(DDT)过程可分为慢速反应压缩阶段和快速反应冲击阶段.当点火延迟时间为370 ms,铝粉质量浓度为300 g/m~3时,在管道中距离点火位置83倍长径比处峰值超压为9.8 MPa,爆速为1 670 m/s,发生了DDT过程.在铝粉-空气混合物自持爆轰波的传播过程中,由于呈现螺旋爆轰波结构,爆速和峰值超压随着传播距离振荡.  相似文献   

7.
采用自制的点火测试装置研究了不同当量比φ下,含不同粒径铝粉的Al-CuO铝热剂的燃烧性能.结果表明,随当量比φ增大,含不同粒径铝粉的Al-CuO铝热剂的火焰传播速率均呈下降趋势.在相同的Al与CuO质量配比下,φ1.5时铝热剂的火焰传播速率随铝粉粒径减小而增大,φ1.5时火焰传播速率随铝粉粒径增大而增大.φ减小,铝热反应剧烈程度增加.Al与CuO质量配比为50:50时,铝热反应的最高燃烧温度随铝粉粒径增加而升高.  相似文献   

8.
为了研究MgH_2对典型含能材料点火燃烧性能的影响规律,采用激光点火和高速摄影可视化技术对MgH_2与RDX等5种含能材料的混合物进行了点火延迟时间和火焰传播速度的测试与计算。结果表明,MgH_2的质量分数为50%和11.1%时对于提高RDX点火燃烧性能的效果最佳;质量分数11.1%的MgH_2最有利于HMX点火燃烧性能的改善;对于CL-20,添加质量分数20%~33.3%的MgH_2可显著提升其火焰传播速度,但是当MgH_2的质量分数为50%和11.1%时混合物的点火延迟时间更短;FOX-7和ADN与MgH_2混合物的点火延迟时间均小于含能组分和MgH_2各自的点火延迟时间,即此类含能材料与MgH_2的点火过程具有相互促进的作用;综合考虑FOX-7点火性能和火焰燃烧性能的提升,添加质量分数11.1%的MgH_2最为有利;MgH_2对ADN点火燃烧性能的提升与MgH_2的添加量成正比。MgH_2促进含能材料点火燃烧性能提升的原因在于MgH_2的分解产物促进了含能材料相态转变,最终促进了点火燃烧性能的提升。  相似文献   

9.
为了研究CL-20粒度对含Al高能固体推进剂燃烧性能的影响,通过捏合浇铸工艺制备了含不同粒度CL-20(14μm、115μm)的GAP/AP/Al高能推进剂,采用靶线法测定了推进剂在不同压强下的燃速,并计算了压强指数;利用微型高温热电偶测温技术、燃烧火焰单幅照相技术研究了CL-20粒度对该推进剂燃烧性能影响的机理。结果表明,7~18MPa下含粗粒度(115μm)CL-20的GAP/AP/Al推进剂的燃速比含细粒度(14μm)CL-20的推进剂高7%~37%;2~10MPa下前者压强指数为0.52,后者为0.46;粗粒度CL-20较细粒度提前进行部分分解,分解产物除催化自身分解反应外,还促进了AP的分解,从而提高了相应推进剂凝聚相反应区的温度攀升速率,并使推进剂的燃速更高。  相似文献   

10.
微米铝粉在声场中的振荡燃烧特性   总被引:2,自引:0,他引:2  
为了解声场中铝粉的燃烧特性,建立了甲烷平面燃烧器,利用外置喇叭产生振荡,进行了微米级铝粉的燃烧实验。研究了铝粉在不同振荡频率下的分布燃烧响应特性及粒径分别为10、20、30μm的3种铝粉颗粒的燃烧特性和产物的阻尼特性。结果表明,振荡频率不同时,铝粉燃烧对振荡压强的增益作用不同,粒径为20μm铝粉燃烧,在振荡频率200Hz和300Hz时增益作用明显。铝粉粒度越大,分布燃烧增益越大。粒径为10μm铝粉对燃烧器高频振荡阻尼最大。随着铝粉粒度增加,燃烧产物颗粒对高频压强振荡的阻尼减小。  相似文献   

11.
KF对微米铝粉在水蒸气中着火燃烧特性的影响   总被引:1,自引:0,他引:1  
为改善微米铝粉在水蒸气中的着火特性和燃烧效率,采用自行设计的管式炉实验平台研究了KF对30 ?m铝粉在1000℃水蒸气中着火燃烧特性的影响。用高速摄影系统记录了样品着火燃烧过程,并通过X射线衍射、扫描电镜技术和化学分析方法分析了产物组分、形貌和燃烧效率。结果表明,加入KF可显著降低30 ?m铝粉的点火延迟时间,与加入5wt% (0.003 g) KF相比,加入15wt% (0.009 g) KF后,样品的点火延迟时间减少了47.58 s;微米铝粉在1000℃水蒸气中不能着火,加入KF后能着火,这是因为KF与水蒸气反应生成KOH,KOH与Al2O3反应会破坏铝粉的氧化壳,加快铝与水蒸气的反应,促进铝粉着火。随KF加入量提高,样品的燃烧效率显著上升,最高为82.24%,比未添加KF样品的燃烧效率提升了38.75%。提高KF加入量,可产生更多的KOH,对氧化壳的破坏效果更显著,进一步促进铝与水蒸气反应,提高铝粉燃烧效率。  相似文献   

12.
TATB基含铝炸药作功能力的试验研究   总被引:1,自引:0,他引:1  
为评价TATB基含铝炸药的作功能力,通过ANSYS-LSDYNS软件,采用Lee-Tarver点火增长三项式模型模拟含铝炸药的圆筒试验,获得了含铝炸药的JWL状态方程及反应速率参数。利用激光位移干涉仪研究了不同铝粉尺寸的含铝炸药加速铜飞片的能力,用数值计算验证了标定的圆筒试验参数。结果表明,粒径较小的铝粉能够使铜飞片获得更大的自由面速度,加速铜飞片的时间缩短,表现为粒径2μm铝粉的含铝炸药反应时间比粒径10μm铝粉的含铝炸药缩短13.6%。计算值与试验结果吻合较好,表明圆筒试验得到的爆轰产物参数是有效的。  相似文献   

13.
为研究降速剂对丁羟四组元推进剂燃烧性能的影响规律,将典型季铵盐和金刚烷衍生物两种高效降速剂引入核壳结构铝基复合颗粒Al@HMX和AP@Al,使其分别作用于HMX颗粒内部和AP颗粒表面,制备了4种含降速剂的铝基复合颗粒(Al/A@HMX,Al/B@HMX,AP@Al/A和AP@Al/B);采用扫描电子显微镜对样品形貌进行了表征;采用高速红外相机拍摄推进剂燃烧过程的火焰红外照片,并对推进剂的爆热、密度、点火延迟时间和燃速进行了测试。结果表明,加入惰性降速剂会导致推进剂爆热降低,而Al@HMX复合颗粒能部分抵消这一现象,使推进剂爆热值增加了338J/g;降速剂能够抑制AP和HMX的热分解过程,使达到AlO辐射峰值前维持低强度的“平台段”;而引入Al@HMX后,推进剂的点火延迟时间比基础配方减小49.4%;在10~20MPa范围内两种降速剂均能有效降低推进剂燃速,在此基础上采用Al@HMX可使含季铵盐丁羟四组元推进剂20MPa下的燃速降低7.1mm/s(38.4%),压强指数降至0.25;当降速剂作用于AP表面时,含质量分数1%季铵盐的推进剂在20MPa下燃速可降低5.0mm/s(27.3%)...  相似文献   

14.
采用CO2激光点火装置联合高速摄影系统及扫描电子显微镜等凝聚相燃烧产物分析技术,研究了高氯酸铵(AP)含量对高Al富燃料推进剂中重要组分AP/Al一次燃烧过程中燃烧现象、引燃时间、燃烧扩散时间、燃尽时间、燃烧效率、颗粒团聚及凝聚相燃烧产物的表面形貌、粒径及其分布的影响。结果表明,各AP/Al混合粉体的燃烧过程均可分为表面引燃、燃烧扩散和火焰熄灭3个阶段,但各样品在不同燃烧阶段的燃烧现象存在明显差异。AP含量由10wt%增至30wt%,样品燃烧剧烈程度增强,燃烧过程中固相颗粒的溅射现象越加明显;在火焰熄灭阶段,各样品燃烧由以停留在样品燃面处的燃烧为主逐渐变为以溅射颗粒的燃烧为主,且随反应进行,燃面已燃固相颗粒最先熄灭,各样品表面引燃时间、燃烧扩散时间、燃烧持续时间均缩短,即燃烧反应速率逐渐加快。在AP/Al混合物中,铝粉的燃烧效率、凝聚相燃烧产物粒度及其团聚程度随AP含量增加而增加。  相似文献   

15.
采用燃速-靶线法研究了铝粉(Al)、镁铝合金粉(Mg-Al)和硼粉(B)以及铝粉含量、粒度等对NC/TMETN/FOX-7改性双基推进剂燃烧性能(燃速和压强指数)的影响;采用单幅放大彩色摄影法研究了其火焰结构。结果表明,推进剂配方中添加金属粉可提高NC/TMETN/FOX-7改性双基推进剂的燃速,金属粉使推进剂燃速的增大幅度由大到小依次为:Al-MgAlB;随着Al粉(粒径12.5μm)质量分数由0增至10%,NC/TMETN/FOX-7推进剂的燃速先增大后减小,当铝粉质量分数为5%时推进剂燃速最高,达到21.19mm/s;NC/TMETN/FOX-7改性双基推进剂的燃速随着铝粉粒度的增大而增大,铝粉粒径由12.5μm增至45μm时,10MPa下推进剂的燃速由21.19mm/s增至24.47mm/s,8~14MPa的压强指数降至0.20以下;NC/TMETN/FOX-7推进剂的火焰结构与NC/NG基推进剂相似,由预热区、亚表面及表面区、暗区和火焰区组成,各区之间的界限不明显。  相似文献   

16.
在氮气气氛下,采用全氟十四酸(FS)对纳米铝粉(nmAl)进行了表面包覆,采用扫描电镜(SEM)、X射线衍射(XRD)和傅里叶变换红外(FT-IR)光谱对其形貌和结构进行了表征.用激光点火装置和低压火药燃烧测试装置对表面处理前后纳米铝粉的点火燃烧性能进行了研究.结果表明,全氟十四酸包覆的纳米铝粉(nmAl/FS),其分散性提高,颗粒分布更均匀;全氟十四酸羧基中的两个氧原子与纳米铝粉表面的A1原子以桥接的方式相结合;与未处理的纳米铝粉相比,在激光热流密度较低时,nmAl/FS的点火延迟时间短;在激光点火燃烧过程中,nmAl/FS的燃烧反应较剧烈,火焰亮度高,在低压火药燃烧测试装置中燃烧时,其燃烧火焰更集中,火焰亮度更高,燃烧更充分.  相似文献   

17.
为了获得钝感和组分均匀的含能微单元,采用静电喷雾法制备了TKX-50/Al/GAP复合微球;采用扫描电镜(SEM)、X射线能谱(EDS)、X-射线衍射仪(XRD)和红外光谱仪(FT-IR)对其形貌结构进行了表征;采用差示扫描量热仪(DSC)测试了热分解性能;采用高速摄影仪测试其点火燃烧性能;根据GB/T 21567-2008、GB/T 21566-2008标准对其感度进行了测试。结果表明,静电喷雾法制备的TKX-50/Al/GAP含能微单元组分分布均匀,为粒径2~3μm的微球;与物理混合法相比,微球的表观分解热提高了860.7J/g,活化能升高了12.07kJ/mol,;静电喷雾法制备的微球点火延迟时间为11ms,燃烧时间为409ms;撞击、摩擦和静电感度与物理混合样品相比,分别降低了83J、80N和0.05J,表明静电喷雾法制备的TKX-50/Al/GAP含能微单元具有良好的安全性能。  相似文献   

18.
肖飞  陈冲 《火炸药学报》2023,(12):1079-1085
为了提高铝与高温水蒸汽的反应活性,采用机械球磨法在不同球磨时间下制备得到了铝基聚四氟乙烯亚稳态分子间复合物(Al/PTFE);通过扫描电镜、激光粒径分析仪、X射线衍射、同步热分析仪研究了Al/PTFE的微观形貌、晶型及氧化性能;利用水蒸汽反应装置研究了Al/PTFE在高温水蒸汽中的点火性能;用扫描电镜、激光粒径分析仪、X射线衍射分析仪研究了Al/PTFE燃烧产物的微观形貌及组成。结果表明,Al/PTFE复合物的形貌随球磨时间的增加由片状向块状转变,粒度随球磨时间的增加而减小;3h球磨制备的Al/PTFE复合物与高温水蒸汽反应时展示出最佳的反应活性,反应产物的中值粒径(D50)为17.2μm; 3h球磨制备的Al/PTFE复合物在600℃和700℃高温水蒸汽下的点火延迟时间分别为29s和15s,且点火温度比1h和5h球磨制备的Al/PTFE更低。  相似文献   

19.
为探究锆粉含量对高能推进剂能量特性的影响规律,利用热力学计算软件CEA分析了不同锆含量的Zr/Al基NEPE推进剂和Zr/Al基叠氮高能推进剂的能量特性;通过计算这两种推进剂的燃烧温度、密度、比冲和密度比冲等能量特性参数,得到了锆含量对推进剂能量特性参数的影响规律,并将结果与ZrH_2/Al基高能推进剂进行对比分析。结果表明,随着Zr含量增加,NEPE推进剂的燃烧温度和比冲均呈下降趋势,密度比冲持续上升,但考虑推进剂的能量特性和高燃温条件下的不稳定燃烧,认为在推进剂中添加质量分数3%~5%的Zr粉较适中;随着Zr含量增加,叠氮高能推进剂的燃烧温度和比冲呈现先增后减的趋势,且分别在Zr粉质量分数为6%和3%左右达到最大值,推进剂密度比冲持续上升。ZrH_2/Al基推进剂的能量性能低于Zr/Al基推进剂的。  相似文献   

20.
为考察含TKX—50(1,1′—二羟基—5,5′—联四唑二羟胺盐)推进剂能量性能及特征信号,理论计算不同含量TKX—50分别取代硝胺炸药、AP(高氯酸铵)、Al时推进剂能量变化,通过理论及试验研究含TKX—50推进剂燃烧产物烟雾状况。结果表明:TKX—50取代硝胺炸药时,随TKX—50含量增加,推进剂密度及比冲均呈上升趋势;取代AP时,随TKX—50含量增加,推进剂密度呈下降趋势,比冲先上升后下降;取代Al时,随TKX—50含量增加,推进剂密度及比冲均呈下降趋势;随TKX—50含量增加,AP、Al含量降低,推进剂可见光透过率、红外光透过率、激光透过率均呈上升趋势,从而在保证能量的同时可降低推进剂特征信号。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号