首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glass-ceramic in the Li2O-Al2O3-SiO2 system has been prepared by melt quenching route. The crystallization kinetics was studied by differential scanning calorimetry. The effects of sintering temperature on the phase transformation, sintering behavior, bulk density, microstructure, thermal expansion, bending strength and dielectric properties were also investigated by X-ray diffractometry and scanning electron microscopy. (Li, Mg, Zn)1.7Al2O4Si6O12 is the first crystalline phase forming in the glass-ceramic and transforms to LiAlSi3O8 phase at 800 °C. The other two crystalline phases of ZrO2 and CaMgSi2O6 precipitate at 700 and 750 °C, respectively. The densification of this LAS glass-ceramic starts at around 730 °C and stops at about 805 °C. The coefficient of thermal expansion increases with the increasing sintering temperature. The sample sintered at 800 °C for 30 min exhibited excellent properties. The nonisothermal activation energy of crystallization is 149 kJ/mol and the values of Avrami constant (n) are in the range of 3.2 to 3.9. The LAS glass-ceramic sintered at 800 °C for 30 min showed excellent properties. This makes that this material suitable for a number of LTCC applications.  相似文献   

2.
The attractiveness of Li7La3Zr2O12 (LLZO) cubic based garnets lies in their high ionic conductivity and the combination of thermal and electrochemical stability. However, relations between composition and conductivity as well as degradation effects are still not completely understood. In this contribution we demonstrate the applicability of microelectrodes (Ø = 20–300 μm) for electrochemical impedance spectroscopy (EIS) studies on LLZO garnets. Microelectrodes allow to obtain local information on the ionic conductivity. A comparison between the overall performance of the sample (3.3 × 10?4 S cm?1) and local measurements revealed differences in conductivity with a maximum of the locally measured values of 6.3 × 10?4 S cm?1 and a minimum of 2.6 × 10?4 S cm?1. One reason behind these conductivity variations is most probably a compositional gradient in the sample. In addition, microelectrodes are very sensitive to conductivity changes near to the surface. This was used to investigate the effect of moisture in ambient air on the conductivity variations of LLZO. Substantial changes of the measured Li-ion transport resistance were found, particularly for smaller microelectrodes which probe sample volumes close to the surface.  相似文献   

3.
The effect of Al3+ substitution on the enhancement of the luminescence of Lu1–xAlxNbO4:Eu3+ and Lu1–xAlxNbO4:Tb3+ was investigated. X-ray diffraction patterns confirmed that the Eu3+, Tb3+, and Al3+ ions were fully incorporated into the Lu3+ sites. In the case of Lu1–xAlxNbO4:Eu3+, the predominant red emission (614 nm) was assigned to the 5D0?→?7F2 transition of Eu3+ and for x?=?0–0.05, its intensity increased up to ~125 and 108% under 395 nm (7F0  5L6) and a charge transfer band excitation, respectively. For Lu1–xAlxNbO4:Tb3+, the strongest emission band peaking at 551 nm was attained in the green region among multiple emission bands corresponding to the 5D4?→?7FJ transitions of Tb3+. Increasing the x values from 0 to 0.05 increased the green emission significantly by ~137%. These phenomena were explained by the local structural distortions and crystal field asymmetry surrounding Eu3+ and Tb3+, which were attributed to a large difference in the ionic radii of Al3+ and Lu3+.  相似文献   

4.
In this study, phase evolution, microstructure, and microwave dielectric properties of (Ba0.98Na0.02)(Mg0.48M3+0.02W0.5)O3 (M3+?=?Al, Ga, Sc, In, Yb, Y, Dy, Gd, and Sm) ceramics sintered at 1700 °C for 1 h were investigated. All the compounds exhibited an ordered cubic perovskite structure. Regardless of the ionic radius of the doped M3+ ions, BaWO4 was detected as the secondary phase in all the compounds. The field emission scanning electron microscopy (FE-SEM) images revealed a dense microstructure in all the compounds, except in the Al-doped compound, which exhibited an insufficient grain growth. The large and irregularly shaped grains indicated that the liquid phase sintering occurred. Splitting of the A1g(O) mode was observed in the Raman spectra of large M3+ ion-doped compounds. Splitting of the F2g modes did not occur and the bands were sharp, indicating that the cubic symmetry was retained. As the ionic radius of the doped M3+ ions increased, the dielectric constant (εr) increased slightly. The compounds doped with M3+?=?Sc, In, Yb, and Y exhibited a very high quality factor (Q?×?f0) in the range of 250,000 ~ 280,000 GHz. In the case of the compounds doped with M3+?=?Al, Ga, Sc, In, Yb, Y, and Dy, the value of the temperature coefficient of resonant frequency (τf) was in the range of ?24 ~ ?19 ppm/°C, while the Gd and Sm-doped compounds exhibited positive values of 2.8 and 31.2 ppm/°C, respectively. The dielectric constant, quality factor, and temperature coefficient of resonant frequency of the In-doped compound, i.e., (Ba0.98Na0.02)(Mg0.48In0.02W0.5)O3, were 18.7, 286,557 GHz, and???24.4 ppm/°C, respectively.  相似文献   

5.
In this article, (Na0.5Bi0.5)1-xBaxTiO3 lead-free piezoelectric ceramics were prepared by solid-state reaction. The influence of Ba contents on phase structures, compositional distribution and electrical properties of (Na0.5Bi0.5)1-xBaxTiO3 ceramics were systematically investigated to further understand the nature of phase transition. It was found that the phase structure of (Na0.5Bi0.5)1-xBaxTiO3 transforms from rhombohedral to tetragonal symmetry at x = 0.06 ~ 0.07 and Ba2+ segregation forms the coexistence of Ba-rich tetragonal and Ba-deficient rhombohedral phases close to MPB. The electrical properties of prepared samples regularly changed with Ba content, which is closely related to the distribution of rhombohedral and tetragonal phases. The prepared sample near MPB exhibited the largest dielectric constant and the excellent piezoelectric properties (the maximal measuring field reached 78 kV/cm and the piezoelectric constant d 33 = 151pC/N).  相似文献   

6.
CaO-Al2O3-SiO2 glass-ceramic were prepared by melt quenching technique. The crystallization behavior and properties were studied by means of a non-isothermal, thermal analysis technique, X-ray diffraction and scanning electron microscopy. The influence of sintering temperature on phase formation, microstructure, bending strength, dielectric and thermal properties were determined. The activation energy of crystallization and the Avrami parameter were also discussed. The X-ray diffraction results show that SiO2 phase could be found in all samples and CaSiO3 and anorthite phases could only be observed in the samples sintered at above 875°C. The densification of glass-ceramic starts at 730°C after the liquid glass is formed and stops at 803°C. Complete densification was achieved at 875°C and the highest mechanical strength was obtained at 850°C, but density significantly decreased at higher temperatures. The coefficient of thermal expansion and the dielectric constant increase with the increasing sintering temperature. The value of the Avrami parameter (n) is ~1.6 and the apparent activation energy (E) is 298 kJ/mol.  相似文献   

7.
The Na+-fast ionic conducting glass-ceramics with Na5YSi4O12 (N5)-type structure were successfully synthesized using the composition formula of Na3+3x-y R1-x P y Si3-y O9 for a variety of rare earth ions, R, under the appropriate composition parameters. In the crystallization of N5-type glass-ceramics, its relatives (Na3YSi3O9 (N3)- and Na9YSi6O18 (N9)-type glass-ceramics) structurally belonging to the family of Na24−3x Y x Si12O36 were found to crystallize as the precursor phase at low temperatures. In order to produce N5 single phase glass-ceramics, the concentration of both phosphorus and rare earth was found important. The meaning of the composition was evaluated by thermodynamic and kinetic studies on the phase transformation of metastable N3 or N9 phases to stable N5 phase with Na+-fast ionic conductivity. The possible combinations of x and y became more limited for the crystallization of the fast ionic conducting phase as the ionic radius of R increased, while the Na+ conduction properties were more enhanced in the glass-ceramics of larger R. These results are discussed in view of the structure and the conduction mechanism. Also studied were the microstructural effects on the conduction properties, which were dependent upon the heating conditions of crystallization. These effects were understood in relation to the grain boundary conduction properties as well as the transmission electron microstructural morphology of grain boundaries.  相似文献   

8.
NASICON-type Li1.4Al0.4Ti1.6(PO4)3 solid electrolytes were prepared by various processes, such as crystallization of glasses, spark plasma sintering (SPS) and conventional sintering process from nanosized precursor powders synthesized by a sol–gel route. The experimental results showed that grain size and relative density were the main factors determining the ionic conductivity of the bulk materials. The SPS technique produced ceramics with nearly 100% of the theoretical density. Maximum room temperature conductivities, 1.39?×?10?3 S cm?1 and 1.12?×?10?3 S cm?1 of grain boundary conductivity and total conductivity, respectively were obtained which were the highest values for Li+ inorganic oxide conductors as reported. Crystallization of ceramics from a glass was also certified as a favorable route to fabricate a bulk material with high conductivity.  相似文献   

9.
All-solid-state lithium-ion batteries represent a promising battery technology thanks to the replacement of the volatile and flammable state-of-the-art liquid electrolyte by a solid electrolyte. Despite the recent progress in the synthesis of sulfide based solid electrolyte with high ionic conductivity, little is known about the interface reactivity of the solid electrolyte with electrode materials. In this study, we synthesized and characterized an amorphous solid electrolyte with the nominal composition (Li2S)3(P2S5). We assessed the feasibility of using this electrolyte at the laboratory scale, and we discuss the potential challenges that govern its electrochemical performance. Galvanostatic cycling and rate performance measurements were conducted using lithium titanium oxide (Li4Ti5O12) as the negative electrode material. The electrochemical measurements were performed using two different counter electrodes, namely Li metal and an InLix alloy. The alloy counter electrode suppressed the formation of lithium dendrites, resulting in increased cycling stability and cell safety. Post mortem X-ray photoemission spectroscopy measurements reveal the reactivity of the solid electrolyte Li3PS4 with the Li4Ti5O12, lithium metal, and InLix alloy.  相似文献   

10.
Preparation and electrical properties of sintered bodies consisting of monophase cubic spinel oxides, CrXMn1.5Co(1.0-X)Ni0.5O4 (0 ≦ X ≦ 0.42), were investigated. Specimens with compositions within X = 0.42 were prepared as starting materials. The element of Cr was used to exchange Co3+ in octahedral sites (B sites) with Cr3+ so that the hopping mechanism can be discussed. The sintered bodies with mono cubic spinel structure were confirmed to be prepared by heat-treatment for 48 h in air at 1000 °C to convert them into a cubic spinel structure after sintering at 1400 °C. The semiconductive characteristics of the sintered bodies were determined as p-type because the Seebeck coefficients were all positive. The electrical conduction of the sintered bodies was concluded to be controlled by the small polaron hopping mechanism. In the region 0.1 ≦ X ≦ 0.42, the lattice constant increases and electrical conduction (σ) decreases linearly with increasing Cr concentration. The decrease in σ and the increase in the lattice constant corresponded to the increase in Cr concentration by which the jumping distance of electrons between Mn3+ and Mn4+ is lengthened.  相似文献   

11.
The (1-x)Ba(Zr0.25Ti0.75)O3-xSr(Fe0.5Nb0.5)O3 or (1-x)BZT-xSFN ceramics have been fabricated via a solid-state reaction technique. All ceramics exhibit a pure phase perovskite with cubic symmetry. The addition of a small amount of SFN (x?=?0.1) produces an obvious change in dielectric behavior. Very high dielectric constants (εr?>?164,000 at 1 kHz and temperature?>?150°C) are observed and the value is obviously higher than dielectric constants for Ba(Zr0.25Ti0.75)O3 and Sr(Fe0.5Nb0.5)O3 ceramics. The ferroelectric measurement data suggests that the unmodified sample exhibited a ferroelectric behavior. However, a transformation from a ferroelectric to a relaxor-like behavior is noted with increasing x concentration. Impedance Spectroscopy (IS) analysis indicates that the presence of excellent dielectric constants is due to the heterogeneous conduction in the ceramics after adding SFN, which can be explained in terms of the Maxwell-Wagner polarization mechanism.  相似文献   

12.
The dielectric properties and the sintering effect upon microstructure of (1–x) CaTiO3-x(Li1/2Nd1/2)-TiO3 Ceramics are investigated in this paper. Nd3+ and Mg2 + ions co-substitution for Ca2 + on A site improves the sintering characteristic of CaTiO3 ceramics with forming orthorhombic perovskite structure. The structure of (1 – x) CaTiO3-x(Li1/2Nd1/2)TiO3 changes from orthorhombic to tetragonal as (Li1/2Nd1/2)TiO3 addition increasing. Limited solubility of (Li1/2Nd1/2)TiO3 in CaTiO3 forming a part solid solution compound achieves the adjustment of for CaTiO3 at low sintering temperature. The proper dielectric properties with = 78, tan = 0.0006, = +7 ppm/C are obtained for 0.8Ca0.67(Nd,Mg)0.22TiO3-0.2(Li1/2Nd1/2)TiO3 ceramics.  相似文献   

13.
A-site deficient lanthanum titanate (La2/3TiO3) materials with perovskite structure are attractive due to their electrical applications such as ion conductors and dielectrics. However, its stability at room temperature in air is obtained only if Na or Li etc. is incorporated into La site or Al into Ti site. In this study, the electrical conductivities of La0.683(Ti0.95Al0.05)O3 have been measured in oxygen partial pressure (Po2) between 1 and 10−18 atm at 1000~1400°C. The electrical conductivity exhibited −1/4, −1/6 and −1/5 dependence (log σ ∝ log , n = −1/4, −1/6, −1/5) depending upon temperature and Po2. The defect model explaining the observation was proposed and discussed. The chemical diffusion coefficient was estimated from the electrical conductivity relaxation.  相似文献   

14.
The structural origin of high piezoelectricity in perovskite-type relaxor ferroelectrics is a fundamental issue that remains elusive for decades. In this study, high and unstable piezoelectricity for the poled ceramics, accompanied with a crossover from a nonergodic relaxor to an ergodic relaxor state at room temperature, has been observed for 0.95(Bi0.5Na0.5)1-x (Li0.5Sm0.5) x TiO3–0.05BaTiO3 ceramics with x = 0.06. The result suggests that the high piezoelectric activity origins from the electric field-induced-ordered nanodomains. The rapid loss of piezoelectricity stems from the reversibility of the ordered nanodomains after removing applied electric field.  相似文献   

15.
A Ce0.8Sm0.15Ca0.05O1.875 (S15C05DC) sample is synthesized by a solid-state reaction serving as a potential electrolyte material for intermediate-temperature solid oxide fuel cells. The sintered sample was found to be dense with a cubic fluorite structure. The addition of Ca2+ can act as a CeO2 sintering aid for accelerating the process. The microstructures and properties of the sample were analyzed by X-ray diffractometry, Raman spectroscopy, scanning electron microscopy, thermomechanical analysis, and transmission electron microscopy. Existing oxygen vacancies in the sample are indicated by a Raman peak at 558 cm?1. The thermal expansion coefficient of the S15C05DC sample at 200–800 °C is approximately 12–14 × 10?6 °C?1. The control of domain size is an important factor for improving the conductivity of S15C05DC. Local clustered nano-domains, with higher Sm2O3 concentrations, were found to regularly arrange to induce the formation of a nanoscale C-type superlattice structure. While Ca doping decreased the formation of the C-type Sm2O3 structure.  相似文献   

16.
La2CoTi0.7Mg0.3O6 (LCTM) material has been prepared at 1473 K for 24 h in air. X-ray powder diffraction study has revealed that it contains two orthorhombic perovskite phases (in a ratio ~1:4) with close unit cell parameters. Annealing of LCTM in reducing (Ar/H2, 8%) atmosphere at 1173 K for 12 h has resulted in the preparation of a single-phase material containing the GdFeO3-type perovskite phase with the unit cell parameters of a?=?5.5631(3) Å, b?=?5.5462(3) Å, c?=?7.8522(5) Å. LCTM material exhibits a reversible transformation of a mixture of two perovskite phases with close cation content in air and a single perovskite phase in a reducing atmosphere. Both as-prepared and reduced LCTM samples have been studied by thermogravimetric analysis and dilatometry in air and Ar/H2 (8%). No chemical interaction between the as-prepared LCTM and standard electrolyte materials for SOFC like GDC and YSZ has been observed up to 1273 K. High-temperature electrical conductivity of the as-prepared LCTM at variable oxygen partial pressure (10?4-0.21 atm) showed weak dependence over pO2 with Ea?=?0.48?±?0.01 eV. AC impedance study of the symmetrical cells LCTM/GDC/LCTM has revealed ASR value at 1173 K of ~8.1?±?0.1 Ω?cm2 in air and 0.24?±?0.05 Ω?cm2 in a reducing atmosphere. These results allow to consider LCTM as a promising electrode material for a symmetrical SOFC.  相似文献   

17.
Oxygen nonstoichiometry and the defect chemistry of the SrSn1-xFexO3-x/2+δ (SSF) system were examined by means of thermogravimetry as a function of oxygen partial pressure in the temperature range of 700–1000 °C and compared against the corresponding mixed ionic-electronic conducting titanate, SrTi1-xFexO3-x/2+δ (STF) system. The alternate B site host cation, Sn, was selected to replicate and extend the STF studies, given its distinct band structure and higher electron mobility associated with its 5s derived conduction band as compared to the 3d nature of the conduction band in the titanate. Though shifted slightly by the larger size of Sn, the defect equilibria – including the oxygen vacancy concentration – were found to be largely dominated by Fe oxidation state, and thus differed only in a limited way from those in STF. Key thermodynamic parameters for SrSn0.65Fe0.35O2.825+δ (SSF35) were derived including the reduction enthalpy (4.137 ± 0.175 eV), the high temperature electronic band gap (1.755 ± 0.015 eV) and the anion Frenkel enthalpy (0.350 ± 0.350 eV). The implications these observations have for cathode behavior in solid oxide fuel cells are briefly discussed.  相似文献   

18.

Objectives

The aim of this study was to demonstrate the feasibility of in vivo three-dimensional (3D) relaxation time T 2 * mapping of a dicarboxy-PROXYL radical using continuous-wave electron paramagnetic resonance (CW-EPR) imaging.

Materials and methods

Isotopically substituted dicarboxy-PROXYL radicals, 3,4-dicarboxy-2,2,5,5-tetra(2H3)methylpyrrolidin-(3,4-2H2)-(1-15N)-1-oxyl (2H,15N-DCP) and 3,4-dicarboxy-2,2,5,5-tetra(2H3)methylpyrrolidin-(3,4-2H2)-1-oxyl (2H-DCP), were used in the study. A clonogenic cell survival assay was performed with the 2H-DCP radical using squamous cell carcinoma (SCC VII) cells. The time course of EPR signal intensities of intravenously injected 2H,15N-DCP and 2H-DCP radicals were determined in tumor-bearing hind legs of mice (C3H/HeJ, male, n = 5). CW-EPR-based single-point imaging (SPI) was performed for 3D T 2 * mapping.

Results

2H-DCP radical did not exhibit cytotoxicity at concentrations below 10 mM. The in vivo half-life of 2H,15N-DCP in tumor tissues was 24.7 ± 2.9 min (mean ± standard deviation [SD], n = 5). The in vivo time course of the EPR signal intensity of the 2H,15N-DCP radical showed a plateau of 10.2 ± 1.2 min (mean ± SD) where the EPR signal intensity remained at more than 90% of the maximum intensity. During the plateau, in vivo 3D T 2 * maps with 2H,15N-DCP were obtained from tumor-bearing hind legs, with a total acquisition time of 7.5 min.

Conclusion

EPR signals of 2H,15N-DCP persisted long enough after bolus intravenous injection to conduct in vivo 3D T 2 * mapping with CW-EPR-based SPI.
  相似文献   

19.
BiFeO3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (BF-PMN-PT) ternary ceramics with pure perovskite phase were prepared through a two-step solid reaction method. Based on structural analysis, the ternary phase diagram of BF-PMN-PT solid solution at room temperature has been established. The Curie temperature TC, remnant polarization Pr and piezoelectric constant d33 vary in the range of 138 to 225 °C, 15.12 to 23.65 μC/cm2 and 129 to 276 pC/N, respectively. The coercive field Ec increases gradually from 5.77 to 29.56 kV/cm upon PT content increasing. The magnetic study suggests that the magnetism turns from diamagnetism for PMN-PT to paramagnetism for BF-PMN-PT by adding BiFeO3 into PMN-PT and adding more content of BF does not change the paramagnetism further.  相似文献   

20.
Barium bismuth niobate, Ba(1-x)Bi(2+2x/3)Nb2O9 (BBN with x = 0.0, 0.1, 0.2, 0.3, 0.4) ceramic powders in the nanometer range were prepared by chemical precursor decomposition method (CPD). The single phase layered perovskite was prepared throughout the composition range studied. No intermediate phase was found during heat treatment at and above 600°C. The crystallite size and the particle size, obtained from XRD and TEM respectively, were in the range of 15–30 nm. The addition of Bi2O3 substantially improved the sinterability associated with high density (96%) which was otherwise difficult in the case of pure BaBi2Nb2O9 (BBN x = 0.0). The sintering was done at 900°C for 4 h. The relative permittivity of BBN ceramics at both room temperature and in the vicinity of the temperature of maximum permittivity (Tm) has increased significantly with increase in bismuth content and loss is also decreased to a certain level of bismuth doping. Tm increased with increase in Bi2O3. The diffuseness (γ) in the phase transition was found to increase from 1.54 to 1.98 with the increase in Ba2+ substitution level from x = 0.0 to x = 0.3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号