首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
过程系统能量集成同步最优综合法   总被引:4,自引:0,他引:4       下载免费PDF全文
尹洪超  袁一 《化工学报》1997,48(1):35-40
将换热网络超结构混合整数非线性规划多目标同步最优综合方法进一步扩展到与过程系统的联合优化,提出了改进的过程热集成同步综合方法,并以反应分离过程与换热网络能量集成为例,建立了同步优化超结构模型,采用混合整数非线性规划的遗传算法求解,可同时得到热集成系统最优的流程结构和操作条件。  相似文献   

2.
Line-up competition algorithm (LCA), a global optimization algorithm proposed recently, is applied to the solution of mixed integer nonlinear programming (MINLP) problems. Through using alternative schemes to handle integer variables, the algorithm reported previously for solving NLP problems can be extended expediently to the solution of MINLP problems. The performance of the LCA is tested with several non-convex MINLP problems published in the literature, including the optimal design of multi-product batch chemical processes and the location-allocation problem. Testing shows that the LCA algorithm is efficient and robust in the solution of MINLP problems.  相似文献   

3.
Sensor network design (SND) is a constrained optimization problem requiring systematic and effective solution algorithms for determining where best to locate sensors. A SND algorithm is developed for maximizing plant efficiency for an estimator‐based control system while simultaneously satisfying accuracy requirements for the desired process measurements. The SND problem formulation leads to a mixed integer nonlinear programming (MINLP) optimization that is difficult to solve for large‐scale system applications. Therefore, a sequential approach is developed to solve the MINLP problem, where the integer problem for sensor selection is solved using the genetic algorithm while the nonlinear programming problem including convergence of the “tear stream” in the estimator‐based control system is solved using the direct substitution method. The SND algorithm is then successfully applied to a large scale, highly integrated chemical process. © 2014 American Institute of Chemical Engineers AIChE J, 61: 464–476, 2015  相似文献   

4.
This paper addresses the short-term scheduling problem for the ethylene cracking process with feedstocks and energy constraints. The cracking production of ethylene is a process with units that have decaying performance, requiring periodic cleanup to restore their performance. Under the condition of limited feedstocks, the production operating mode of the cracking furnaces is to keep yields constant by continuously increasing the coil temperature. We present a hybrid MINLP/GDP formulation based on continuous-time representation for the scheduling problem over a finite time horizon. In order to solve the proposed model, which is reformulated as an MINLP model, an improved outer approximation algorithm with multi-generation cuts and problem-dependent integer cuts are developed to solve real large-scale problems. Numerical examples are presented to illustrate the application of the model. Based on analyzing the optimal solution and sensitivity of the model, some conclusions are obtained to provide useful suggestions for real cracking process production.  相似文献   

5.
This paper describes the simultaneous MINLP synthesis of heat integrated heat exchanger networks comprising different heat exchanger types. The stage-wise superstructure of heat exchanger networks (HEN) by Yee and Grossmann (Comput. Chem. Eng. 14 (1990) p. 1165) is extended to alternative exchanger types. The selection of the types is modeled by disjunctions based on operating limitations and the required heat transfer area. Since different types of heat exchangers involve different design geometries, which influences the inlet and outlet temperatures of heat exchangers, additional constraints are specified to provide a feasible temperature distribution in HEN. The consideration of different exchanger types drastically increases the combinatorics, size and computation effort needed to solve the problem. The integer-infeasible path MINLP approach has been applied to perform an efficient initialization scheme and to halve CPU times for solving MILP master problem of the modified OA/ER algorithm. A special multilevel MINLP procedure in reduced integer space has been proposed to solve medium size HEN problems (20 streams) comprising 103 and more binary variables.  相似文献   

6.
In this contribution we present an online scheduling algorithm for a real world multiproduct batch plant. The overall mixed integer nonlinear programming (MINLP) problem is hierarchically structured into a mixed integer linear programming (MILP) problem first and then a reduced dimensional MINLP problem, which are optimized by mathematical programming (MP) and genetic algorithm (GA) respectively. The basis idea relies on combining MP with GA to exploit their complementary capacity. The key features of the hierarchical model are explained and illustrated with some real world cases from the multiproduct batch plants.  相似文献   

7.
Discrete-continuous non-linear optimization models are frequently used to formulate problems in process system engineering. Major modeling alternatives and solution algorithms include generalized disjunctive programming and mixed integer non-linear programming (MINLP). Both have advantages and drawbacks depending on the problem they are dealing with. In this work, we describe the theory behind logmip, a new computer code for disjunctive programming and MINLP. We discuss a hybrid modeling framework that combines both approaches, allowing binary variables and disjunctions for expressing discrete choices. An extension of the logic-based outer approximation (OA) algorithm has been implemented to solve the proposed hybrid model. Computational experience is reported on several examples, which are solved using disjunctive, MINLP and hybrid formulations.  相似文献   

8.
A novel adaptive surrogate modeling‐based algorithm is proposed to solve the integrated scheduling and dynamic optimization problem for sequential batch processes. The integrated optimization problem is formulated as a large scale mixed‐integer nonlinear programming (MINLP) problem. To overcome the computational challenge of solving the integrated MINLP problem, an efficient solution algorithm based on the bilevel structure of the integrated problem is proposed. Because processing times and costs of each batch are the only linking variables between the scheduling and dynamic optimization problems, surrogate models based on piece‐wise linear functions are built for the dynamic optimization problems of each batch. These surrogate models are then updated adaptively, either by adding a new sampling point based on the solution of the previous iteration, or by doubling the upper bound of total processing time for the current surrogate model. The performance of the proposed method is demonstrated through the optimization of a multiproduct sequential batch process with seven units and up to five tasks. The results show that the proposed algorithm leads to a 31% higher profit than the sequential method. The proposed method also outperforms the full space simultaneous method by reducing the computational time by more than four orders of magnitude and returning a 9.59% higher profit. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4191–4209, 2015  相似文献   

9.
从结构优化角度建立精馏塔优化的混合整数非线性规划(MINLP)模型,为了消除整数变量,引入绕流效率将MINLP问题转化为非线性规划(NLP)问题。针对得到的NLP问题提出一种优化方法,在该方法中采用结构优化中常用的信赖域优化算法进行求解,并应用虚拟瞬态连续性方程辅助优化中的稳态模拟。采用提出的优化方法对3个精馏系统进行设计优化,以不同初始值开始,均可得到令人满意的优化结果,表明所提优化方法具有良好的稳健性,对于较复杂的部分热耦合精馏过程仍然可以有效优化求解;信赖域算法在精馏塔优化中也表现出良好的收敛性。  相似文献   

10.
Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of crame is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis.  相似文献   

11.
A simulated annealing approach to the solution of minlp problems   总被引:9,自引:0,他引:9  
An algorithm (M-SIMPSA) suitable for the optimization of mixed integer non-linear programming (MINLP) problems is presented. A recently proposed continuous non-linear solver (SIMPSA) is used to update the continuous parameters, and the Metropolis algorithm is used to update the complete solution vector of decision variables. The M-SIMPSA algorithm, which does not require feasible initial points or any problem decomposition, was tested with several functions published in the literature, and results were compared with those obtained with a robust adaptive random search method. For ill-conditioned problems, the proposed approach is shown to be more reliable and more efficient as regards the overcoming of difficulties associated with local optima and in the ability to reach feasibility. The results obtained reveal its adequacy for the optimization of MINLP problems encountered in chemical engineering practice.  相似文献   

12.
基于GPU加速求解MINLP问题的SQP并行算法   总被引:2,自引:2,他引:0       下载免费PDF全文
康丽霞  张燕蓉  唐亚哲  刘永忠 《化工学报》2012,63(11):3597-3601
针对确定性算法求解大型复杂混合整数非线性规划的时间不可接受问题,通过对序贯二次规划算法(SQP)和图形处理器(GPU)的架构特点分析,提出了基于GPU加速策略的并行化SQP算法。算法的主要思想是通过枚举法确定二元变量的取值,在保证取值完整的基础上,使用CPU+GPU的并行策略,同时运用大量线程进行非线性规划子问题的求解。算例的数值实验结果表明:本文所提出的算法较之传统串行计算具有较好的加速效果,特别适合求解二元变量较多,约束条件相对少的MINLP问题。  相似文献   

13.
This short communication presents a generic mathematical programming formulation for computer-aided molecular design (CAMD). A given CAMD problem, based on target properties, is formulated as a mixed integer linear/non-linear program (MILP/MINLP). The mathematical programming model presented here, which is formulated as an MILP/MINLP problem, considers first-order and second-order molecular groups for molecular structure representation and property estimation. It is shown that various CAMD problems can be formulated and solved through this model.  相似文献   

14.
This article describes alternative GDP formulation and convex hull representations for process synthesis problems and their implementation in a unique MINLP process synthesizer MIPSYN. A special translation of variables in mixed‐integer, relaxed, and logic‐based variations has been proposed, which enables modeling and solving process alternatives in a narrowed lifted space of variables, defined by nonzero lower and upper bounds. Based on these translation variations, alternative formulations have been developed for convex hulls, multiple‐term generalized disjunctive programming problems, and logic‐based outer‐approximation algorithm, all of them being specialized for the synthesis of process flowsheets. Several studies were performed and three different large‐scale synthesis problems were solved to test the performance and efficiency of different formulations. This initial research indicates that the proposed alternative convex hull representation usually outperforms the conventional one when solving both MILP and NLP steps in highly combinatorial MINLP process networks problems. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

15.
In this work we propose algorithms for the solution of multiparametric quadratic programming (mp-QP) problems and multiparametric mixed-integer quadratic programming (mp-MIQP) problems with a convex and quadratic objective function and linear constraints. For mp-QP problems it is shown that the optimal solution, i.e. the vector of continuous variables and Lagrange multipliers, is an affine function of parameters. The basic idea of the algorithm is to use this affine expression for the optimal solution to systematically characterize the space of parameters by a set of regions of optimality. The solution of the mp-MIQP problems is approached by decomposing it into two subproblems, which converge based upon an iterative methodology. The first subproblem, which is an mp-QP, is obtained by fixing the integer variables and its solution represents a parametric upper bound. The second subproblem is formulated as a mixed-integer non-linear programming (MINLP) problem and its solution provides a new integer vector, which can be fixed to obtain a parametric solution, which is better than the current upper bound. The algorithm terminates with an envelope of parametric profiles corresponding to different optimal integer solutions. Examples are presented to illustrate the basic ideas of the algorithms and their application in model predictive and hybrid control problems.  相似文献   

16.
Production planning of processors located within in a facility or distributed across facilities is a routine and crucial industrial activity. So far, most attempts at this have treated planning horizon as a decision variable, and have limited their scope to sequence-independent setups. In this two-part paper, we present a new and improved methodology for solving the single machine economic lot scheduling problem (ELSP) with sequence-dependent setups and a given planning horizon. We decompose the entire complex problem into two subproblems; one involving lot sizing and the other involving lot sequencing and scheduling. In this part, we present a novel mixed integer nonlinear programming (MINLP) formulation for the lot-sizing problem. Using a multi-segment separable programming approach, we transform this MINLP into a MILP and propose one rigorous and two heuristic algorithms for the latter. Based on a thorough numerical evaluation using randomly simulated large problems, we find that our best heuristic gives solutions within 0.01% of the optimal on an average and in much less time than the optimal algorithm. Furthermore, it works equally well on problems with sequence-independent setups. Overall, our methodology is well suited for real-life large-scale industrial problems.  相似文献   

17.
This article is concerned with global optimization of water supply system scheduling with pump operations to minimize total energy cost. The scheduling problem is first formulated as a non‐convex mixed‐integer nonlinear programming (MINLP) problem, accounting for flow rates in pipes, operation profiles of pumps, water levels of tanks, and customer demand. Binary variables denote on–off switch operations for pumps and flow directions in pipes, and nonlinear terms originate from characteristic functions for pumps and hydraulic functions for pipes. The proposed MINLP model is verified with EPANET, which is a leading software package for water distribution system modeling. We further develop a novel global optimization algorithm for solving the non‐convex MINLP problem. To demonstrate the applicability of the proposed model and the efficiency of the tailored global optimization algorithm, we present results of two case studies with up to 4 tanks, 5 pumps, 5 check valves, and 21 pipes. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4277–4296, 2016  相似文献   

18.
反应溶剂被广泛应用于液-液均相有机合成中,能够大幅度提高反应速率与选择性,有助于绿色合成新工艺路线的开发。提出了一种基于Dragon描述符与SMILES (simplified molecular-input line-entry system)编码的计算机辅助(computer-aided molecular design, CAMD)反应溶剂设计方法。首先,利用决策树-遗传算法构建可定量预测反应速率常数k的反应动力学模型;基于构建的反应动力学模型,提出了集成决策树-遗传算法与CAMD设计方法,通过SMILES分子编码算法生成同分异构体,并利用Dragon软件计算描述符大小,建立由目标函数与约束方程组成的混合整数非线性规划(mixed integer nonlinear programming, MINLP)模型,进一步采用分解算法对模型进行优化求解,从而实现反应溶剂设计目标;最后,以Diels-Alder反应为例,验证了该方法的可行性与有效性。  相似文献   

19.
化工过程系统综合问题新的模块化求解策略和算法   总被引:1,自引:0,他引:1  
针对过程系统综合问题中求解混合整数非线性规划(MINLP)问题传统解法的不足提出了在[JP+1]模块化环境中过程系统综合问题新的求解策略,同时提出相对应的算法.实例证明了该策略的正确性和新算法的有效性.  相似文献   

20.
Molecular‐level decisions are increasingly recognized as an integral part of process design. Finding the optimal process performance requires the integrated optimization of process and solvent chemical structure, leading to a challenging mixed‐integer nonlinear programming (MINLP) problem. The formulation of such problems when using a group contribution version of the statistical associating fluid theory, SAFT‐γ Mie, to predict the physical properties of the relevant mixtures reliably over process conditions is presented. To solve the challenging MINLP, a novel hierarchical methodology for integrated process and solvent design (hierarchical optimization) is presented. Reduced models of the process units are developed and used to generate a set of initial guesses for the MINLP solution. The methodology is applied to the design of a physical absorption process to separate carbon dioxide from methane, using a broad selection of ethers as the molecular design space. The solvents with best process performance are found to be poly(oxymethylene)dimethylethers. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3249–3269, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号