首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This study investigates extraction of Passiflora seed oil by using supercritical carbon dioxide. Artificial neural network (ANN) and response surface methodology (RSM) were applied for modeling and the prediction of the oil extraction yield. Moreover, process optimization were carried out by using both methods to predict the best operating conditions, which resulted in the maximum extraction yield of the Passiflora seed oil. The maximum extraction yield of Passiflora seed oil was estimated by ANN to be 26.55% under the operational conditions of temperature 56.5 °C, pressure 23.3 MPa, and the extraction time 3.72 h; whereas the optimum oil extraction yield was 25.76% applying the operational circumstances of temperature 55.9 °C, pressure 25.8 MPa, and the extraction time 3.95 h by RSM method. In addition, mean-squared-error (MSE) and relative error methods were utilized to compare the predicted values of the oil extraction yield obtained from both models with the experimental data. The results of the comparison reveal the superiority of ANN model compared to RSM model.  相似文献   

2.
The high-quality oil, abundant in carotenoids, squalene and sterols (mainly consisting of campesterol, stigmasterol, β-sitosterol and β-amyrin), was extracted by supercritical CO2 from lotus bee pollen for its potential nutraceutical use. The effects of extraction pressure and temperature on the yields and the compositions of the extracts were investigated by using a two-factor central composite rotatable design experiment. ANOVA for response surface model demonstrated that the data were adequately fitted into four polynomial models. The yields of the oil, carotenoids, squalene and sterols were significantly influenced by the experimental variables. It was predicted that maximum oil yield obtained at the extraction pressure of 38.2 MPa and temperature of 49.7 °C contained the maximum amount of carotenoids, squalene and sterols. GC-FID analysis of the fatty acid composition of lotus bee pollen oil showed that polyunsaturated fatty acids accounted for approximately 22% of the total fatty acids.  相似文献   

3.
The present study aims to isolate the lipids from microalgae by supercritical CO2 (SC-CO2) extraction followed by a further enrichment of crude lipids to produce high-purity docosahexenoic acid (DHA) by an urea complexation method. Our systematic approach indicates the optimum conditions of supercritical CO2 extraction were obtained as follows: 35 MPa, 40 °C, ethanol (95%, v/v) as the co-solvent, and the mass ratio of material to co-solvent 1:1. Under these conditions, 33.9% of lipid yield and 27.5% of DHA content were achieved. Despite the relatively low lipid yield, supercritical CO2 extraction has exhibited many advantages over the Soxhlet extraction for the DHA enrichment such as high DHA purity and superb product quality. Furthermore, urea complexation method on DHA enrichment considerably increased the DHA purity from 29.7% to 60.4% with an enrichment ratio of 60.6%, under the optimum complexation conditions of urea/fatty acid 2:1, complexation time 8 h, and the complexation temperature of −10 °C.  相似文献   

4.
In this work, supercritical CO2 extraction has been carried out on a traditional Chinese herb of Baizhu under pressure of 15-45 MPa, temperature of 40-60 °C, mean powder size of 0.167-0.675 mm, and extraction time of up to 180 min. The maximum extraction yield obtained in 5 h is about 6.76 × 10−2 g per gram raw materials at 60 °C and 45 MPa. The extraction process is correlated by means of five different mathematical models. The evaluation of these models against experimental data shows that among these models the Sovová model performs the best with an overall average absolute relative deviation of 1.62%, followed by Crank and Naik models, finally the Barton and Martínez models. From the Sovová model, the mass transfer coefficient in solid or fluid are obtained and they are varying in the ranges of 4.02-6.14 × 10−8 m/s and 0.88-2.87 × 10−9 m/s, respectively. These results suggest that solute diffusion in solid matrices and solute mass transfer in fluid are both important in affecting the supercritical CO2 extraction process of Baizhu.  相似文献   

5.
The methanolysis of rapeseed oil catalyzed by commercial styrene-divinylbenzene macroporous acid resins was performed in a batch reactor at 100-140 °C and 10-46 MPa to study the effect of supercritical carbon dioxide (scCO2) on the performances of the process. Reaction temperatures of 120-140 °C were necessary to obtain high enough yields of fatty acid methyl esters. Upon addition of scCO2 faster transesterification kinetics was obtained also at the lowest investigated operating pressure (10-11 MPa), working in two fluid phase systems. Experiments performed changing the reaction time indicated that most of the esters were formed during the first 3 h. When the pressure was increased at 38-46 MPa, the fluid phases merged in a single one without significant modification of the performances of the process.The enhancement effect of scCO2 on the transesterification kinetics is tentatively discussed in terms of modification of the phase behaviour of the reaction system and swelling of the polymeric acid resin.  相似文献   

6.
Supercritical carbon dioxide (SC-CO2) was employed to extract oil rich in omega-3 fatty acids (FAs) from chia seeds, and the physicochemical properties of the oil were determined. A central composite rotatable design was used to analyze the impact of temperature (40 °C, 60 °C and 80 °C), pressure (250 bar, 350 bar and 450 bar) and time (60 min, 150 min and 240 min) on oil extraction yield, and a response surface methodology (RSM) was applied. The extraction time and pressure had the greatest effects on oil. The highest oil yield was 92.8% after 300 min of extraction time at 450 bar. The FA composition varied depending on operating conditions but had a high content of α-linolenic acid (44.4-63.4%) and linoleic acid (19.6-35.0%). The rheological evaluation of the oils indicated a Newtonian behavior. The viscosity of the oil decreased with the increase in temperature following an Arrhenius-type relationship.  相似文献   

7.
In this study, extracting shale oil from Jordanian oil shale using supercritical fluid extraction has been investigated. Experimental data indicates that by using supercritical extraction with carbon dioxide, using co-solvents can be viable. A relatively high yield can be obtained at relatively moderate pressure. At the highest temperature and pressure of 450 °C and 3200 psi, respectively, and with hexane as a co-solvent, the highest yield obtained was 100 kg/ton of oil shale, which was at the highest temperature and pressure of 450 °C and 3200 psi, respectively, and with hexane as a co-solvent. Increasing both the operating pressure and temperature increases the oil yield. In the supercritical state, carbon dioxide along with other co-solvents, such as hexane and acetone, interact with the kerogen leading to the dissolution of fragments due to an increase in solubility and mass transfer.Increasing the particle size of oil shale for extraction decreases the oil yield. Most of the extracted oil obtained is saturated hydrocarbons, olefinic and a portion of aromatic hydrocarbons. As the extraction temperature increases, the production of low-molecular weight compounds increases.  相似文献   

8.
A continuous process for biodiesel production in supercritical carbon dioxide was implemented. In the transesterification of virgin sunflower oil with methanol, Lipozyme TL IM led to fatty acid methyl esters yields (FAME) that exceeded 98% at 20 MPa and 40 °C, for a residence time of 20 s and an oil to methanol molar ratio of 1:24. Even for moderate reaction conversions, a fractionation stage based on two separators afforded FAME with >96% purity. Lipozyme TL IM was less efficient with waste cooking sunflower oil. In this case, a combination of Lipozyme TL IM and Novozym 435 afforded FAME yields nearing 99%.  相似文献   

9.
Continuous production of fatty acid methyl esters (FAMEs) from corn oil was studied in a supercritical carbon dioxide (SC-CO2) bioreactor using immobilized lipase (Novozym 435) as catalyst. Response surface methodology (RSM) based on central composite rotatable design (CCRD) was employed to investigate and optimize the reaction conditions: pressure (11-35 MPa), temperature (35-63 °C), substrate mole ratio (methanol:corn oil 1-9) and CO2 flow rate (0.4-3.6 L/min, measured at ambient conditions). Increasing the substrate mole ratio increased the FAME content, whereas increasing pressure decreased the FAME content. Higher conversions were obtained at higher and lower temperatures and CO2 flow rates compared to moderate temperatures and CO2 flow rates. The optimal reaction conditions generated from the predictive model for the maximum FAME content were 19.4 MPa, 62.9 °C, 7.03 substrate mole ratio and 0.72 L/min CO2 flow rate. The optimum predicted FAME content was 98.9% compared to an actual value of 93.3 ± 1.1% (w/w). The SC-CO2 bioreactor packed with immobilized lipase shows great potential for biodiesel production.  相似文献   

10.
Thermal stability of biodiesel in supercritical methanol   总被引:1,自引:0,他引:1  
Hiroaki Imahara 《Fuel》2008,87(1):1-6
Non-catalytic biodiesel production technologies from oils/fats in plants and animals have been developed in our laboratory employing supercritical methanol. Due to conditions in high temperature and high pressure of the supercritical fluid, thermal stability of fatty acid methyl esters and actual biodiesel prepared from various plant oils was studied in supercritical methanol over a range of its condition between 270 °C/17 MPa and 380 °C/56 MPa. In addition, the effect of thermal degradation on cold flow properties was studied. As a result, it was found that all fatty acid methyl esters including poly-unsaturated ones were stable at 270 °C/17 MPa, but at 350 °C/43 MPa, they were partly decomposed to reduce the yield with isomerization from cis-type to trans-type. These behaviors were also observed for actual biodiesel prepared from linseed oil, safflower oil, which are high in poly-unsaturated fatty acids. Cold flow properties of actual biodiesel, however, remained almost unchanged after supercritical methanol exposure at 270 °C/17 MPa and 350 °C/43 MPa. For the latter condition, however, poly-unsaturated fatty acids were sacrificed to be decomposed and reduced in yield. From these results, it was clarified that reaction temperature in supercritical methanol process should be lower than 300 °C, preferably 270 °C with a supercritical pressure higher than 8.09 MPa, in terms of thermal stabilization for high-quality biodiesel production.  相似文献   

11.
Kinetics and selectivity of supercritical carbon dioxide (SC CO2) extraction of Helichrysum italicum flowers were analyzed at pressures in the range of 10-20 MPa and temperatures of 40 °C and 60 °C (density of SC CO2 from 290 to 841 kg/m3) and also at 10 MPa and 40 °C using flowers with different moisture contents (10.5% and 28.4%). Increased moisture content of H. italicum flowers resulted in enchased solubility of solute enabling decrease of SC CO2 consumption necessary for achieving desired extraction yield. The most abundant compounds in the supercritical extracts are sesquiterpenes and waxes while monoterpenes and sesquiterpenes are the main constituents of essential oil obtained by hydrodistillation. The optimal set of working parameters with respect to extraction yield, SC CO2 consumption and chemical composition of extract were defined related to moisture content of raw material and SC CO2 density.  相似文献   

12.
Jude A. Onwudili 《Fuel》2010,89(2):501-15
A viscous waste derived from a bio-diesel production plant, in the form of crude glycerol, was reacted under subcritical and supercritical water conditions and the product composition determined in relation to process conditions. Preliminary analysis of the original sample showed that the main constituent organic compounds were methanol (20.8 wt.%), glycerol (42.3 wt.%) and fatty acid methyl esters (33.1 wt.%). Uncatalyzed reforming experiments were carried out in a 75 ml Hastelloy-C batch reactor at temperatures between 300 °C and 450 °C and pressures between 8.5 MPa and 31 MPa. Oil/wax constituted more than 62 wt.% of the reactions products. At 300 °C, the main product was a waxy material containing mainly glycerol and fatty acid methyl esters. As the temperature increased to supercritical water conditions, low viscosity oils were produced and all of the glycerol was reacted. The oils contained mainly saturated and unsaturated fatty acid esters as well as their decomposition products. The gaseous products were carbon dioxide, hydrogen and methane and lower concentrations of carbon monoxide and C2-C4 hydrocarbons. No char formation was observed. However, during alkaline gasification with sodium hydroxide at 380 °C, the reaction products included a gaseous effluent containing up to 90% by volume of hydrogen, in addition to oil and significant amount of whitish solid residue (soap). Sodium hydroxide influenced the production of hydrogen via water-gas shift by the removal of carbon dioxide as sodium carbonate, but also decreased oil product possibly through saponification.  相似文献   

13.
The supercritical carbon dioxide (SFE) extraction of Dalmatian sage (Salvia officinalis L.) was investigated and compared to extraction performed by Soxhlet ethanol-water (70:30) mixture extraction (SE) and hydrodistillation (HD). The supercritical extraction allowed isolation of wide spectrum of phytochemicals, while other applied methods were limited to either volatiles (HD) or high molecular compounds isolation (SE). The kinetics of the supercritical extraction and fractionation within the pressure range of 10-30 MPa at 50 °C were also analyzed as well as the chemical compositions of total extract and partial or differential fractions isolated at different CO2 consumption. Volatile fraction could be isolated at low pressure and low CO2 consumption, whereby the pressures between 10 and 15 MPa followed by increased CO2 consumption were favourable for obtaining desired selectivity of diterpenes which contain compounds with expressed antioxidative characteristics.  相似文献   

14.
Brazilian redspotted shrimp (Farfantepenaeus paulensis) waste is an important source of carotenoids such as astaxanthin and lipids with a high ω−3 fatty acids content, mainly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). In order to establish an efficient and environmental friendly recovery process, the lipids and astaxanthin were extracted from the freeze-dried redspotted shrimp waste (including head, tail and shell) using supercritical carbon dioxide. The effects of the extraction conditions of pressure (200-400 bar) and temperature (40-60 °C) on the global yield (X0), astaxanthin extraction yield and astaxanthin concentration in the extract were evaluated. It was found that the pressure and temperature showed a very low significant effect on the lipid extraction yield using supercritical CO2. In comparison with lipid extraction by solvents, maximum efficiency of supercritical fluid extraction achieved 64% of hexane extraction yield. On the other hand, temperature and pressure had significant effects on astaxanthin extraction yield. Thegreatest amount of extract was obtained at 43 °C and 370 bar, with 39% of recovery.  相似文献   

15.
In this study, the extraction of jojoba seed oil obtained from jojoba seed using both supercritical CO2 and supercritical CO2+ethanol mixtures was investigated. The recovery of jojoba seed oil was performed in a green and high-tech separation process. The extraction operating was carried out at operating pressures of 25, 35 and 45 MPa, operating temperatures of 343 and 363 K, supercritical fluid flow rates of 3.33 × 10−8, 6.67 × 10−8 and 13.33 × 10−8 m3 s−1, entrainer concentrations of 2, 4 and 8 vol.%, and average particle diameters of 4.1 × 10−4, 6.1 × 10−4, 8.6 × 10−4 and 1.2 × 10−3 m. It was found that a green chemical modifier such as ethanol could enhance the solubilities, initial extraction rate and extraction yield of jojoba seed oil from the seed matrix as compared to supercritical CO2. In addition, it was found that the solubility, the initial extraction rate and the extraction yield depended on operating pressure and operating temperature, entrainer concentration, average particle size and supercritical solvent flow rate. The solubility of jojoba seed oil and initial extraction rate increased with temperature at the operating pressures of 35 and 45 MPa and decreased with increasing temperature at the operating pressure of 25 MPa. Furthermore, supercritical fluid extraction involved short extraction time and minimal usage of small amounts entrainer to the CO2. About 80% of the total jojoba seed oil was extracted during the constant rate period at the pressure of 35 and 45 MPa.  相似文献   

16.
Tailored supercritical carbon dioxide (scCO2) extraction of alkylresorcinols (ARs) from rye bran resulting in pre-purification of ARs already during extraction process. The pre-purification was achieved by splitting the extraction process in 2 steps.. In both steps, the CO2 pressure was set at 25 MPa with a flow rate of 10 g/min. The first step was carried out at 70 °C, 0.06% of ethanolic co-solvent for 2 h, followed by the second step at 45 °C using 10% of ethanolic co-solvent for 4 h, resulting in a pre-purified ARs extract. From the pre-purified scCO2 extract, chromatographed on C8 column, were obtained pure ARs homologues of C17, C19 and C21 (68% of total) eluting separately in a linear gradient of ethanol. Additionally, a rapid method for the isolation of high purified pools of ARs homologues using a disposable solid phase extraction SPE-C18 column and a step gradient of ethanol was developed.  相似文献   

17.
Satoshi Yoda  Daniel Bratton 《Polymer》2004,45(23):7839-7843
The direct synthesis of poly(l-lactic acid) (PLLA) from an l-lactic acid oligomer has been performed in supercritical carbon dioxide (scCO2) using an esterification promoting agent, dicyclohexyldimethylcarbodiimide (DCC), and 4-dimethylaminopyridine (DMAP) as a catalyst. PLLA within Mn of 13,500 g/mol was synthesised in 90% yield at 3500 psi and 80 °C after 24 h. The molecular weight distribution of the products was narrower than PLLA prepared with melt-solid phase polymerisation under conventional conditions. Both DCC and DMAP showed high solubility in scCO2 (DCC: 7.6 wt% (1.63×10−2 mol/mol CO2) at 80 °C, 3385 psi, DMAP: 4.5 wt% (1.62×10−2mol/mol CO2) at 80 °C, 3386 psi) and supercritical fluid extraction was found to be effective at removing excess DMAP and DCC after the polymerisation was complete. We show that DCC and DMAP are effective esterification promoting reagents with further applications for condensation polymerisations in scCO2.  相似文献   

18.
The extraction of triglycerides from used frying oil with liquid and supercritical ethane has been studied in a semibatch system at different temperatures (25-80 °C) and pressures (150-250 kg/cm2). It has been found that isobaric decreases of temperature and isothermal increases of pressure lead to both increasing extraction yields and decreasing separation efficiencies. Lipid fractions recovered in the high density region had acceptable concentrations of polar compounds.Results with ethane have been compared to those reported for CO2 in earlier works. At similar reduced densities of the solvents, oil solubility in ethane was higher than in CO2, being the separation efficiency of polar fractions slightly better when using ethane.The extraction process was further analyzed in a packed countercurrent column. At optimum conditions (250 kg/cm2, 25 °C, and solvent-to-oil ratio 45 g:g) about 85% of the triglycerides were recovered, being 11.2% the polar content of the triglyceride fraction recovered.  相似文献   

19.
In this work the supercritical fluid extraction (SFE) with carbon dioxide (CO2) and with ethyl acetate (EtAc) and ethanol (EtOH) as co-solvents was applied to obtain the phenolic fraction from guava seeds (Psidium guajava L.). The extraction was explored at various operating conditions, using 10, 20 and 30 MPa and 40, 50 and 60 °C. The use of EtAc and EtOH as co-solvents in SFE was also studied. The supercritical process was compared with traditional techniques such as Soxhlet extraction using EtAc and EtOH as solvents. The quality of the different extracts, obtained using SFE and Soxhlet methods and different solvents, was evaluated through the antioxidant activity, obtained by the collection methods of scavenging DPPH and bleaching of β-carotene, and also through the total phenolic content (TPC) of the samples, by the Folin-Ciocalteu method. The antioxidant potential indicates the use of ethanol as co-solvent as the best modifier in SFE, used in concentration of 10% (w/w) at 50 °C and 30 MPa. The quality of the extracts obtained by SFE with EtOH varied with the operating conditions of temperature and pressure, with higher values obtained at 10 and 20 MPa for TPC results and also antioxidant methods. The process yield of the phenolic fraction was also evaluated for all the extraction procedures studied (SFE and Soxhlet), with results varying from 0.380 to 1.738% (w/w).  相似文献   

20.
The oils from two kinds of pumpkin seeds, black and white ones, were extracted by supercritical CO2 (SC‐CO2). The technological variables for SC‐CO2 extraction were optimized and the resulting oils were analyzed by GC‐MS. As a result, the optimal conditions for SC‐CO2 extraction were as follows: 25~30 MPa, 45 °C, SC‐CO2 flow rate of 30~40 kg/h. The main compounds in the resulting oils were 9,12‐octadecadienoic acid, 9‐octadecenoic acid, stearic acid, palmitic acid for both types of pumpkin seeds, however, the black seed oil contains more unsaturated fatty acids (UFA) than the white seed oil. On the other hand, some compounds including heptadecanoic acid (0.27%), tetracosanic acid (0.1%), 9‐dodecaenoic acid (0.45%) and pentadecenoic acid (0.05%) were found in white seed oil but not in black seed oil; while eicosanic acid (0.05%), 11,14‐eicosadienoic acid (0.2%), 11‐octadecenoic acid (0.06%), 7‐hexadecenoic acid (0.02%) and 1,12‐tridecadiene (0.02%) were only found in black seed oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号