首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 727 毫秒
1.
TiB2–Al2O3 composites with Ni–Mo as sintering aid have been fabricated by a hot-press technique at a lower temperature of 1530 °C for 1 h, and the mechanical properties and microstructure were investigated. The microstructure consists of dispersed Al2O3 particles in a fine-grained TiB2 matrix. The addition of Al2O3 increases the fracture toughness up to 6.02 MPa m1/2 at an amount of 40 vol.% Al2O3 and the flexural strength up to 913.86 MPa at an amount of 10 vol.% Al2O3. The improved flexural strength of the composites is a result of higher density than that of monolithic TiB2. The increase of fracture toughness is a result of crack bridging by the metal grains on the boundaries, and crack deflection by weak grain boundaries due to the bad wetting characters between Ni–Mo and Al2O3.  相似文献   

2.
2r02 and its modified versions containing MgO and Y203 were selected as particulate reinforcement in order to achieve better mechanical properties in fused mullite. Particulate composites containing up to 25 vol% Zr02 and its modifications were pressed to 65% relative density at 350 MPa followed by sintering at 1650°C and 1700°C for one hour. Studies were conducted on fracture toughness, transverse rupture strength, dielectric constant, microstructure, fractography and thermal shock resistance. Composites sintered at 1700°C were found superior in properties than those sintered at 1650°C.  相似文献   

3.
The C40 Mo(Si0.75Al0.25)2/Al2O3 composites were prepared by spark plasma sintering (SPS) of mechanically alloyed (MA) powders. The Mo(Si0.75Al0.25)2/0–20 vol.% Al2O3 materials, showing micron and submicron composite structure, possess a hardness of 13.9–14.6 GPa but a poor toughness of 1.78–1.80 MPa m1/2. The addition of 30 vol.% Al2O3 leads to the formation of the micron C40 Mo(Si0.75Al0.25)2/Al2O3 composite with an intergranular distribution of Al2O3, that results in a drop of the hardness to 10.2 GPa and an improvement of the toughness to 3.67 MPa m1/2. The transition of the cleavage facets to the intergranular fracture with the addition of Al2O3 is assumed as the main toughening mechanism.  相似文献   

4.
Grain growth in the two-phase (liquid + solid) region of Ni3Al reinforced with 0.8 vol.% Al2O3 participates synthesized by a spray atomization and co-injection technique was investigated. The grain growth of the as-sprayed and hot isostatically pressed (HIPed) materials in the two-phase region was found to be consistent with cube law kinetics, i.e., grain growth exponent was approximately 3. The activation energy for grain growth for the as-sprayed material was determined to be 308 ± 19 kJ mol−1 while that of the HIPed material was calculated to be 327 ± 23 kJ mol−1. The activation energy for grain growth was not a function of the amount of liquid phase or the composition of the liquid. Furthermore, the activation energy for grain growth was higher than that for diffusion through the liquid phase, suggesting that the mechanism for grain growth of the as-sprayed and HIPed Ni3Al composite in the two-phase region was controlled by an interface reaction. The role of the second-phase Al2O3 particles on grain growth for the as-sprayed and HIPed Ni3Al materials was not significant.  相似文献   

5.
High performance nanocomposites were prepared by incorporating 0–12 vol.% nano-sized (39 nm) Al2O3 particles into PEEK matrix using compression molding. The microhardness and dynamic mechanical properties of the nanocomposites increase with increasing Al2O3 content. The wear resistance of the nanocomposites evaluated at a sliding speed of 1.0 m/s and nominal pressure from 0.5 MPa to 1.25 MPa under dry sliding conditions was improved more than threefold at 0.8 vol.% Al2O3 content. However, the wear resistance of the nanocomposites containing above 1.67 vol.% Al2O3 was deteriorated, despite their higher hardness and stiffness as compared to that of nanocomposites containing lower Al2O3 content. The surface roughness of the wear track formed over the countersurface increases with increasing Al2O3 content. The coefficient of friction of nanocomposites was higher than that of pure PEEK. SEM and optical microscopy have shown that wear of pure PEEK occurs by the mechanism of adhesion mainly, whereas of nanocomposites by microploughing and abrasion. Energy dispersive spectrometry (EDS) shows that Fe and alloying elements of countersurface transfer to the wear debris at higher Al2O3 content.  相似文献   

6.
Effects of TiO2/Al ratio on the microstructures and mechanical properties of in situ Al2O3/TiAl based composites were investigated. The results indicate that the as-sintered products consist of grains of nearly lamellar ?2 + ? structure with a dispersion of randomly oriented Al2O3 particles. A 43.9Ti-38.6Al-17.5TiO2-nNb2O5 system was compared to 57.46Ti-36.78Al-5.76TiO2-nNb2O5 system. The lamellar spacing of the products increases and the ?2 phase volume decreases with decreasing TiO2/Al ratio. For each system, as the volume of ?2 phase increases, the average lamellar spacing decreases. Strength increases with an increasing TiO2/Al ratio due to the amount of ?2 phase. Al2O3 phase increases with increasing TiO2/Al ratio. Toughness increases with decreasing TiO2/Al ratio. When the Nb2O5 content is smaller than 6 wt.%, the lamellar spacing plays an important role in toughness than the Al2O3 content. When the Nb2O5 content is larger than 6 wt.%, the Al2O3 content exhibits significantly increases the values of toughness than lamellar spacing.  相似文献   

7.
Fe/Al2O3复合材料的制备和性能   总被引:1,自引:0,他引:1  
用石墨埋烧方法制备Fe/Al2O3复合材料,对其力学性能和微观结构进行了分析。结果表明:Fe/Al2O3复合材料的弯曲强度与断裂韧性均随Al2O3含量的升高先升高后降低,当Al2O3含量(质量分数)为70%时,其弯曲强度与断裂韧性分别达到602.49 MPa和9.33 MPa·m1/2,其硬度随Al2O3含量先降低后升高。在烧结过程中在Fe颗粒周围形成一种成分为FeO与FeAl2O4的壳体,在壳体与Fe颗粒之间存在微裂纹缺陷。壳体的形成和壳体与金属颗粒间的微裂纹钝化了外部应力,从而提高了复合材料的韧性。  相似文献   

8.
Samarium-doped ceria (SDC) thin films were prepared from Sm(DPM)3 (DPM = 2,2,6,6-tetramethyl-3,5-heptanedionato) and Ce(DPM)4 using the aerosol-assisted metal–organic chemical vapor deposition method. -Al2O3 and NiO-YSZ (YSZ = Y2O3-stabilized ZrO2) disks were chosen as substrates in order to investigate the difference in the growth process on the two substrates. Single cubic structure could be obtained on either -Al2O3 or NiO-YSZ substrates at deposition temperatures above 450 °C; the similar structure between YSZ and SDC results in matching growth compared with the deposition on -Al2O3 substrate. A typical columnar structure could be obtained at 650 °C on -Al2O3 substrate and a more uniform surface was produced on NiO-YSZ substrate at 500 °C. The composition of SDC film deposited at 450 °C is close to that of precursor solution (Sm : Ce = 1 : 4), higher or lower deposition temperature will both lead to sharp deviation from this elemental ratio. The different thermal properties of Sm(DPM)3 and Ce(DPM)4 may be the key reason for the variation in composition with the increase of deposition temperature.  相似文献   

9.
为了制备低膨胀、高强、轻质复合材料,采用模压法制备了ZrW_(2)O_(8)-Cf/E51复合材料,并研究了超声时间对其微观组织、热膨胀行为和极限抗拉强度的影响。结果表明:在制备过程中颗粒团聚后容易受到纤维单丝阻挡并在纤维束表面聚集。在20 min之内,延长超声时间会减少ZrW_(2)O_(8)颗粒团聚。随着颗粒团聚的减少,复合材料断口会由平面状、无纤维拔出变为台阶状、有纤维拔出。在碳纤维和ZrW_(2)O_(8)颗粒的综合作用下,ZrW_(2)O_(8)-Cf/E51复合材料在热膨胀过程中膨胀量dL/L0会出现增大、减小和缓慢上升三个阶段,平均热膨胀系数也会出现相应的三个阶段。超声时间从5 min延长到20 min,ZrW_(2)O_(8)-Cf/E51复合材料的平均热膨胀系数降低了约130%,极限抗拉强度提高了约8%。  相似文献   

10.
An effective method is developed for low temperature metal oxide deposition through thermal decomposition of metal diketonates in supercritical carbon dioxide (scCO2) solvent. The rates of Al(acac)3 (Aluminum acetyl acetonate) and Ga(acac)3 (Gallium acetyl acetonate) thermal decomposition in scCO2 to form conformal Al2O3 and Ga2O3 thin films on planar surfaces were investigated. The thermal decomposition reaction of Al(acac)3 and Ga(acac)3 was found to be initialized at  150 °C and 160 °C respectively in scCO2 solvent, compared to  250 °C and 360 °C in analogous vacuum-based processes. By measuring the temperature dependence of the growth rates of metal oxide thin films, the apparent activation energy for the thermal decomposition of Al(acac)3 in scCO2 is found to be 68 ± 6 kJ/mol, in comparison with 80–100 kJ/mol observed for the corresponding vacuum-based thermal decomposition reaction. The enhanced thermal decomposition rate in scCO2 is ascribed to the high density solvent which effectively reduces the energy of the polar transition states in the reaction pathway. Preliminary results of thin film deposition of other metal oxides including ZrOx, FeOx, Co2O3, Cr2O3, HfOx from thermal decomposition of metal diketonates or fluorinated diketonates in scCO2 are also presented.  相似文献   

11.
Calcium oxide and calcium hafnium oxide thin films were grown by atomic layer deposition on borosilicate glass and silicon substrates in the temperature range of 205–300 °C. The calcium oxide films were grown from novel calcium cyclopentadienyl precursor and water. Calcium oxide films possessed refractive index 1.75–1.80. Calcium oxide films grown without Al2O3 capping layer occurred hygroscopic and converted to Ca(OH)2 after exposure to air. As-deposited CaO films were (200)-oriented. CaO covered with Al2O3 capping layers contained relatively low amounts of hydrogen and re-oriented into (111) direction upon annealing at 900 °C. In order to examine the application of CaO in high-permittivity dielectric layers, mixtures of Ca and Hf oxides were grown by alternate CaO and HfO2 growth cycles at 230 and 300 °C. HfCl4 was used as a hafnium precursor. When grown at 230 °C, the films were amorphous with equal amounts of Ca and Hf constituents (15 at.%). These films crystallized upon annealing at 750 °C, showing X-ray diffraction peaks characteristic of hafnium-rich phases such as Ca2Hf7O16 or Ca6Hf19O44. At 300 °C, the relative Ca content remained below 8 at.%. The crystallized phase well matched with rhombohedral Ca2Hf7O16. The dielectric films grown on Si(100) substrates possessed effective permittivity values in the range of 12.8–14.2.  相似文献   

12.
以CaO-B2O3-SiO2(CBS)玻璃粉体和Al2O3陶瓷粉体为原料,通过在CBS与Al2O3的质量比固定为50:50的玻璃-陶瓷复合材料中添加适量的Bi2O3作为烧结助熔剂,探讨了Bi2O3助熔剂对CBS/Al2O3复合材料的烧结性能、介电性能、抗弯强度和热膨胀系数的影响规律.研究表明:Bi2O3助熔剂能通过降低CBS玻璃的转变温度和黏度促进CBS/Al2O3复合材料的致密化进程,于880 ℃下烧结即能获得结构较致密、气孔较少的CBS/Al2O3复合材料.然而,过量添加Bi2O3将使玻璃的黏度过低,从而恶化CBS/Al2O3复合材料的烧结性能、介电性能及抗弯强度.当Bi2O3的添加量为CBS/Al2O3复合材料的1.5wt%时,于880 ℃下烧结即能获得最为致密的CBS/Al2O3复合材料,密度为2.82 g·cm-3,这一材料具有良好的介电性能(介电常数为7.21,介电损耗为1.06×10-3),抗弯强度为190.34 MPa,0~300 ℃的热膨胀系数为3.52×10-6 K-1.  相似文献   

13.
This paper describes an experimental study of the compressive failure of T800/924C carbon-fibre/efoxy composite laminates. Undirectional laminates loaded parallel to the fibres have compressive strengths that are 70% of the tensile strength and fail by fibre-microbuckling. During microbuckling the fibre debonds from the matrix, and the fibres break in bending. Multidirectional [(±45/02)3]sm laminates were also tested in compression, and the critical failure mechanism observed was microbuckling of the 0° plies. The failure strain was almost the same as for the undirectional laminate, The failure strain was almost the same as for the unidirectional laminate, which indicated that the ±45° plies have no significant influence on the failure strength of the 0° plies.  相似文献   

14.
Metal-organic chemical vapour deposition (MOCVD) of various phases in PrOx system has been studied in relation with deposition temperature (450–750 °C) and oxygen partial pressure (0.027–100 Pa or 0.2–750 mTorr). Depositions were carried out by pulsed liquid injection MOCVD using Pr(thd)3 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) precursor dissolved in toluene or monoglyme. By varying deposition temperature and oxygen partial pressure amorphous films or various crystalline PrOx phases (Pr2O3, Pr7O12, Pr6O11) and their mixtures can be grown. The pure crystalline Pr2O3 phase grows only in a narrow range of partial oxygen pressure and temperature, while high oxygen pressure (40–100 Pa) always leads to the most stable Pr6O11 phase. The influence of annealing under vacuum at 750 °C on film phase composition was also studied. Near 90% step coverage conformity was achieved for PrOx films on structured silicon substrates with aspect ratio 1:10. In air degradation of Pr2O3 films with transformation to Pr(OH)3 was observed in contrast to Pr6O11 films.  相似文献   

15.
Wear behavior of Al/Al2O3/C hybrid metal matrix composites fabricated by squeeze casting method was characterized. The effects of volume fraction of carbon fiber on wear behavior of hybrid composites was investigated. Wear behavior of Al/Al2O3/C composites was characterized by the dry spindle wear test under various sliding speeds.

The wear resistance of Al/Al2O3/C composites was remarkably improved over Al/Al2O3 composites by adding carbon fibers to Al/Al2O3/C composites. Specifically, at the intermediate sliding speed the wear resistance of Al/Al2O3/C composites containing 8 vol.% carbon fiber was found to be better than that of the rest of the carbon hybrid composites. From fractographic studies, damaged sections in wear surfaces of hybrid composites at intermediate sliding speed were not observed due to the formation of solid lubrication film. The solid lubrication film which was formed as a result of adding carbon fibers improved the wear resistance of carbon hybrid composites because this film reduced the high friction force between MMCs and counter material.  相似文献   


16.
The effect of Al2O3 particles on microhardness and room-temperature compression properties of directionally solidified (DS) intermetallic Ti–46Al–2W–0.5Si (at.%) alloy was studied. The ingots with various volume fractions of Al2O3 particles and mean 22 interlamellar spacings were prepared by directional solidification at constant growth rates ranging from 2.78×10−6 to 1.18×10−4 ms−1 in alumina moulds. The ingots with constant volume fraction of Al2O3 particles and various mean interlamellar spacings were prepared by directional solidification at a growth rate of 1.18×10−4 ms−1 and subsequent solution annealing followed by cooling at constant rates varying between 0.078 and 1.889 K s−1. The mean 22 interlamellar spacing λ for both DS and heat-treated (HT) ingots decreased with increasing cooling rate according to the relationship λ−0.46. In DS ingots, microhardness, ultimate compression strength, yield strength and plastic deformation to fracture increased with increasing cooling rate. In HT ingots, microhardness and yield strength increased and ultimate compression strength and plastic deformation to fracture decreased with increasing cooling rate. The yield stress increased with decreasing interlamellar spacing and increasing volume fraction of Al2O3 particles. A linear relationship between the Vickers microhardness and yield stress was found for both DS and HT ingots. A simple model including the effect of interlamellar spacing and increasing volume fraction of Al2O3 particles was proposed for the prediction of the yield stress.  相似文献   

17.
In general, it is very difficult to obtain obviously reinforced effect in discontinuously reinforced aluminum matrix composites at the temperature above 400 °C. In the present study, we report an effective method to improve the high-temperature tensile strength of Al18B4O33w/Al composite by change of interfacial state. The pure aluminum matrix composites reinforced by Al18B4O33w with different ZnAl2O4 coating contents were fabricated by squeeze casting. The results indicate that ZnAl2O4 coating of the whiskers can effectively improve the high-temperature tensile strength of Al18B4O33w/Al composite, although the tensile strength of the composite decreases with increasing the tensile temperature. On the basis of fractograph analysis, the fracture mechanism of the composites at elevated temperatures was investigated.  相似文献   

18.
A12O3 and its mixture with 3 wt% Ti02 powders were prepared by fusion and crushing methods. Al2O3 + 13 wt% TiO2 and A12O3 + 40 wt% TiO2 powders were mixtures of fused AI2O3 + 3 wt% TiO2 and 10 wt% and 37 wt% of TiO2respectively. Chemical analysis of the powders showed that: approximately 1 wt% of impurities were present in each powder. True and tap densities were measured and are discussed for all powders. Powder size study showed narrow range of distribution of particle size in each powder. SEM study showed that the particles were in round and other irregular shapes in all the powders. A12O3 was found to be in alpha phase and TiO2 in rutile phase. All the powders were coated by plasma spraying at 16 kW. The density of the coatings were measured and are discussed. In the coatings, A12O3 was in both alpha and gamma phases. In A12O3 + 13 wt% TiO2 and A12O3 + 40 wt% TiO2 coatings, the oxygen reduction from TiO2 was observed.  相似文献   

19.
Co3O4 nanoparticles and cobalt (fcc-Co) powders were successfully synthesized by solvothermal process from a single precursor. The reaction of Co(Ac)2 with sodium dodecylbenzenesulfonate (SDBS) shows evident-dependent temperature effect. At 180 °C, Co(Ac)2 reacts with SDBS to produce precursor CoCO3 plate structures, which are assembled by small nanoparticles. At the temperature of 250 °C, the precursor CoCO3 can be gradually decomposed to form Co3O4 nanoparticles with diameter of ca. 70 nm. While, at 250 °C, the reaction of Co(Ac)2 with SDBS also produce precursor CoCO3 nanoparticles/plates, but the CoCO3 nanoparticles/plates would only decompose to give metal Co. In this process, SDBS acts as not only a surfactant but also a reagent. Magnetic measurements reveal that the as-prepared Co3O4 nanoparticles exhibit weak ferromagnetic properties and Co powders show ferromagnetic properties. In addition, a possible formation mechanism was elaborately discussed.  相似文献   

20.
穆阳  李皓 《材料研究学报》2019,33(11):865-873
用有机先驱体浸渍裂解(PIP)法制备SiCf/BN/SiC复合材料,研究了微米Al2O3粉体对其弯曲强度、高温介电和高温吸波性能的影响。结果表明,随着Al2O3的含量从5%提高到20%,SiCf/BN/SiC的弯曲强度呈现出先升高后降低的趋势,最大值达到295 MPa;随着温度的升高复合材料复介电常数的实部和虚部均逐渐增大,加入Al2O3填料能降低高温复介电常数及其随温度增大的幅度。无填料复合材料的室温和高温吸波性能均较差,而添加20% Al2O3的复合材料在8.2~12.4 GHz频段的室温反射损耗均低于-8 dB,且适用厚度为3.0~3.5 mm,700℃时厚度为3.0 mm的反射损耗为-5~-8 dB,在实际工程应用中具有较强的可设计性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号