首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The luminous polypropylene fiber based on long afterglow luminescent material Sr2MgSi2O7:Eu^2+,Dy^3+was prepared by melt-spinning process. Micro-morphology, phase composition, crystal structure, spectral features and afterglow properties of the lu-minescent fiber were tested and analyzed. The results indicated that the fiber had independent superposition phase features of both Sr2MgSi2O7:Eu2+,Dy3+and polypropylene. The range of its excitation wavelength was located between 250-450 nm;therefore, the luminescent fiber could be excited by ultraviolet or visible light. It could emit blue light of 460 nm wavelength after excitation, which was caused by the 5d-4f transition of Eu^2+ions within the host lattice. The initial luminescent intensity was more than 0.8 cd/m^2, and afterglow life lasted 7 h. The afterglow decay was composed of rapid-decaying and slow-decaying processes, and the decay charac-teristics depended on the depth and concentration of trap level in the Sr2MgSi2O7:Eu^2+,Dy^3+.  相似文献   

2.
Long afterglow phosphors MAl2O4:Eu^2+ , Dy^3+ (M = Ca, Sr, Ba) were synthesized by microemulsion method, and their crystal structure and luminescent properties were compared and investigated. XRD patterns of samples indicate that phosphors CaAl2O4:Eu^2+, Dy^3+ and SrAl2O4 : Eu^2+, Dy^3+ are with monoelinie crystal structure and phosphor BaAl2O4:Eu^2+ , Dy^3+ is with hexagonal crystal structure. The wide range of excitation spectrum of phosphors MAl2O4: Eu^2 + , Dy^3+ (M = Ca,Sr, Ba) indicates that the luminescent materials can he excited by light from ultraviolet ray to visible light and the maximum emission wavelength of phosphors MAl2O4:Eu^2+ , Dy^3+ (M = Ca, Sr, Ba) is found mainly at λem of 440 nm (M = Ca), 520 nm (M = Sr) and 496 nm (M = Ba) respectively, the corresponding colors of emission light are blue, green and eyna-green respectively. The afterglow decay tendency of phosphors can he summarized as three processes: initial rapid decay, intermediate transitional decay and very long slow decay. Afterglow decay curves coincide with formula I = At^ - n, and the sequence of afterglow intensity and time is Sr 〉 Ca 〉 Ba.  相似文献   

3.
The luminous polypropylene fiber based on long afterglow luminescent material Sr2MgSi2O7:Eu2+,Dy3+ was prepared by melt-spinning process. Micro-morphology, phase composition, crystal structure, spectral features and afterglow properties of the luminescent fiber were tested and analyzed. The results indicated that the fiber had independent superposition phase features of both Sr2MgSi2O7:Eu2+,Dy3+ and polypropylene. The range of its excitation wavelength was located between 250–450 nm; therefore, the luminescent fiber could be excited by ultraviolet or visible light. It could emit blue light of 460 nm wavelength after excitation, which was caused by the 5d-4f transition of Eu2+ ions within the host lattice. The initial luminescent intensity was more than 0.8 cd/m2, and afterglow life lasted 7 h. The afterglow decay was composed of rapid-decaying and slow-decaying processes, and the decay characteristics depended on the depth and concentration of trap level in the Sr2MgSi2O7:Eu2+,Dy3+.  相似文献   

4.
Y2O2S:Sm^3+, Mg^2+, Ti^4+ phosphor was synthesized by co-precipitation method. The crystalline structure of all synthesized phosphors was investigated by XRD. The result showed that all synthesized phosphors had a hexagonal crystal structure, which was the same as Y2O2S. The emission spectrum and excitation spectrum were measured, and the effect of Sm^3 + molar ratio on the spectra was discussed. The emission spectra of the phosphors showed three emission peaks due to typical transitions of Sm^3 + (4G5/2→6HJ ,J = 5/2, 7/2, 9/2), and the emission peaks at 606 nm was stronger than others. With the increase of Sm^3 + molar ratio, the emission intensity was strengthened. The excitation peaks were ascribed to the representative energy transition 4f→4f of Ti^4+ phosphor prepared by co-precipitation method was Sm^3+ ions. The results indicated that the Y2O2S : Sm^3+ , Mg^2+ , an efficient long afterglow phosphor.  相似文献   

5.
The (Ba1- x, Srx ) 2 SiO4 : EU^2+ green-emitting phosphors were synthesized by conventional solid-state reaction in a CO-reductive atmosphere, and their luminescent properties were investigated. The XRD data show that the Ba/Sr ratio not only affects the lattice parameters, but also influences the emission peak. The excitation spectra indicate that this phosphor can be effectively excited by UV light from 370 to 470 nm. The emission band is due to the 4f^65d^1→4f^7 transition of the Eu^2+ ion. With an increase in x, the emission band shifts to longer wavelength and the reason was discussed. The emission spectra exhibit a satisfactory green performance under different excitation wavelength(380,398,412,420,460 nm). (Ba1- x, Srx ) 2 SiO4 : EU^2+ is a promising phosphor for green white-lighting-emission diode by ultraviolet chip.  相似文献   

6.
Novel red-emitting phosphors Sr2MgSi2O7:Eu3+ were prepared by gel-combustion method assisted by microwave. The phase struc-ture and luminescent properties of as-synthesized phosphors were investigated by XRD and fluorescence spectrophotometer, respectively. The results showed that the as-synthesized sample was Sr2MgSi2O7 with tetragonal crystal structure. The excitation spectrum of Sr2MgSi2O7:Eu3+ was composed of two major parts: one was the broad band between 200 and 350 nm, which belonged to the charge transfer of Eu3+-O2-; the other consisted of a series of sharp lines between 350 and 450 nm, ascribed to the f-f transition of Eu3+. The emission spec-trum consisted of two emission peaks at 593 and 616 nm, which was attributed to 5D0→7F1 and 5D0→7F2 of Eu3+, respectively. The concen-tration of Eu3+ (x) had great effect on the emission intensity of Sr2-xMgSi2O7:Eu3+x. When x varied in the range of 0.04-0.18, the intensity of emission peaks at 593 and 616 nm increased gradually with the concentration of Eu3+ increasing. It was interesting that no concentration quenching occurred. Moreover, the luminescent intensity could be greatly enhanced with incorporation of charge compensator Li+ ions.  相似文献   

7.
New long phosphorescent phosphors Ba1-x CaxAl2O4:Eu^2 , Dy^3 with tunable color emission were prepared and studied. The emission spectra show that the tuning range of the color emission of the phosphors is between 498 and 440 nm, which is dependent on x, under the excitation of UV. The wavelength of the afterglow increases with the increasing of x until x equals 0.6. The XRD patterns show that the single phase limit in the phosphors is below x value of 0.4.The Thermolumineseence spectra were measured to investigate the traps created by the doping of Dy^3 .  相似文献   

8.
M0.2Ca0.8TiO3 : Pr^3 (M = Mg^2 , Sr^2 , Ba^2 , Zn^2 ) long persistence red phosphors were prepared by solid state reaction. The influence of the partially replacing Ca^2 in CaTiO3 with Mg^2 , Sr^2 , Ba^2 , Zn^2 on the excitation spectra, the emission spectra and the long persistence properties were studied. The results suggest that certain quantity of Mg^2 , Sr^2 , Ba^2 , Zn^2 which partially replace Ca^2 can enhance the luminescent intensity and prolong the afterglow persistence of the samples. The intensity of Mg0.2Ca0.8TiO3: Pr^3 is above all of the samples. Take Mg0.2Ca0.8TiO3:Pr^3 as the basic sample, the influence of Pr^3 concentrations (C (Pr^3 )) on the long afterglow properties were also studied.The results suggest that when the C (Pr^3 ) is 0.10% (tool fraction) the intensity of the sample is the highest. The excitation spectra of all these samples show broad band spectra ranging from 300 - 500 nm peaking at about 342 nm. The emission spectra also exhibit a broad band peaking at 613 nm (CaTiO3: Pr^3 is 612 nm). XRD research indicates that the crystalline phases change due to the replacement of divalent metal ions. The research on the thermoluminescence spectra of Mg0.2Ca0.8TiO3:Pr^3 indicates that the peak is at 107.35℃ and the depth of the trap energy is about 0.852 eV.  相似文献   

9.
The long afterglow phosphor CaAl2Si2O8:Eu^2+ , Dy^3+ was prepared by a sol-gel method. The sol-gel process and the structure of the phosphor were investigated by means of X-ray diffraction analysis (XRD). It is found that the single anorthite phase formed at about 1000 %, which is 300 % lower than that required for the conventional solid state reaction. The obtained phosphor powders are easier to grind than those of solid state method and the partical size of phosphor has a relative narrow distribution of 200 to 500 nm. The photoluminescence and afterglow properties of the phosphor were also characterized. An obvious blue shift occurs in the excitation and emission spectra of phosphors obtained by sol-gel and solid state reaction methods. The change of the fluorescence spectra can be attributed to the sharp decrease of the crystalline grain size of the phosphor resulted from the sol-gel technique.  相似文献   

10.
Tb3+ and Yb3+ codoped Lu2O3 nanophosphors were synthesized by the reverse-strike co-precipitation method. The obtained Lu2O3:Tb3+,Yb3+ nanophosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectra. The XRD results showed that all the prepared nanophosphors could be readily indexed to pure cubic phase of Lu2O3 and indicated good crystallinity. The Tb3+→Yb3+ energy transfer mechanisms in the UV-blue region in Lu2O3 nanophosphors were investigated. The experimental results showed that the strong visible emission around 543 nm from Tb3+ (5D4→7F5) and near-infrared (NIR) emission around 973 nm from Yb3+ (2F5/2→2F7/2) of Lu2O3:Tb3+,Yb3+ nanophosphors were observed under ultraviolet light excitation, respectively. Tb3+ could be effectively excited up to its 4f75d1 state and relaxed down to the 5D4 level, from which the energy was transferred cooperatively to two neighboring Yb3+. The Yb3+ concentration dependent luminescent properties and lifetimes of both the visible and NIR emissions were also studied. The lifetime of the visible emission decreased with the increase of Yb3+ concentration, verifying the efficient energy transfer from the Tb3+ to the Yb3+. Cooperative energy transfer (CET) from Tb3+ to Yb3+ was discussed as a possible mechanism for the near-infrared emission. When doped concentrations were 1 mol.% Tb3+ and 2 mol.% Yb3+, the intensity of NIR emission was the strongest.  相似文献   

11.
With the pretreatment of pyrolysis, the uni-form, smooth, dense and crack free Gd203:Eu^3 films were obtained by sol-gel process without shielding at mosphere. Atomic force microscopy (AFM), X-ray diffraction (XRD), Ellipsometry, transmission, photoluminescence and X-ray excited emission were applied to study to the surface morphology, structure,thickness and optical properties of the films. The resuits show that the films are made up of grains with cubic structure in average size about 22 nm. With 21 times reproducible spin coating and pyrolysis treatment, the thickness of the film could reach to 792 nm and the transmittance of the film in visible region is above 90%. Two peaks at 223 and 250 nm are found in excitation spectra, which correspond to host lattice(HL) excitation and charge transfer (CT) excitation,respectively. Meanwhile, the main peak relates to HLexcitation which is contrary to that of Gd203:Eu^3 powder. This phenomenon will be beneficial to radioluminescence. The emission spectra show that the main peak located at 611 nm could be excited either by UV or X-ray, which correspond to ^7F2→5D0 transition in Eu3 ions. The luminescence intensity at 10 ms is only 10^-4 time of that at 10 tLs, which means that the afterglow in Gd203:Eu^3 films is insignificant for X-ray imaging.  相似文献   

12.
The luminescent properties of Sr2.97MgSi2O8:Eu2+0.01 phosphors were investigated with different Ln3+0.02(Ln3+:Dy3+,Er3+,Ho3+) co-dopants. The co-dopants had no influence on both the structure of the lattice and the position of the emission peak. However, the afterglow properties of samples were enhanced with different co-dopants. The afterglow duration of the Dy3+ co-doped sample was longer than that of the others. Furthermore, the co-doping samples had stronger thermoluminescence (TL) intensity and therefore longer afterglow duration. At last, the self-reduction of Eu3+→Eu2+ was observed in an silicate compound of Sr3-xMgSi2O8:xEu phosphor in air condition. This is the first time to show a blue long afterglow phosphor synthesized avoiding reducing atmosphere.  相似文献   

13.
The hardystonite phosphors of Eu2+ activated M2ZnSi2O7(M=Sr,Ba) were synthesized by combustion-assisted method.They were systematically characterized by photoluminescence excitation and emission spectra.The emission spectra of these two phosphors showed that the main emission peaks are at 475 and 503 nm due to 4f65d1→4f7 transition of Eu2+.Both phosphors could be efficiently excited in the wavelength range of 250-425 nm where the near ultraviolet light-emitting diode was well matched.The(x,y) color coordinates were determined with the emission values(x,y)=(0.41,0.21) and(0.16,0.45) for the M2ZnSi2O7:Eu2+(M=Sr,Ba) phosphors.  相似文献   

14.
A series of red phosphors Ca10Li (PO4)7:Eu3+ were synthesized by high temperature solid-state reaction method. Their luminescence properties were characterized by means of photoluminescence excitation and emission spectra,CIE chromaticity and quantum efficiency. Results indicated that the phosphors could be effectively excited by the near ultraviolet (NUV) light (393 nm). The main emission peaks of the phosphor were ascribed to the transition 5D0-7F2 (613 and 617 nm) of Eu3+ ion when samples were excited by...  相似文献   

15.
Green-emitting Sr2LiSiO4F:Eu2+ and blue-emitting Sr2MgSi2O7:Eu2+ phosphors were synthesized by the conventional high temperature solid-state route,respectively.Their structures and photoluminescenee properties were comparatively investigated.It was found that the mixture phases of Sr2MgSi2O7 and SrF2 were obtained when a part of Sr2+ in Sr2LiSiO4F was replaced by some amount of Mg2+ in order to design the possible SrMgLiSiO4F:Eu2+ phosphor.Based on the photoluminescence analysis,Sr2LiSiO4F:Eu2+ phosphor exhibited a green broad emission band of main peak at 513 nm under the excitation of 365 nm,while the Sr2MgSi2O7:Eu2+ and SrMgLiSiO4F:Eu2+ phosphor showed blue emission centered at 467 nm.The temperature dependent photoluminescence properties and room temperature decay time for the three kinds of phosphors were also discussed in this paper.  相似文献   

16.
M0.2Ca0.8TiO3∶Pr3 (M=Mg2 , Sr2 , Ba2 , Zn2 ) long persistence red phosphors were prepared by solid state reaction. The influence of the partially replacing Ca2 in CaTiO3 with Mg2 , Sr2 , Ba2 , Zn2 on the excitation spectra, the emission spectra and the long persistence properties were studied. The results suggest that certain quantity of Mg2 , Sr2 , Ba2 , Zn2 which partially replace Ca2 can enhance the luminescent intensity and prolong the afterglow persistence of the samples. The intensity of Mg0.2Ca0.8TiO3∶Pr3 is above all of the samples. Take Mg0.2Ca0.8TiO3∶Pr3 as the basic sample, the influence of Pr3 concentrations(C(Pr3 )) on the long afterglow properties were also studied. The results suggest that when the C(Pr3 ) is 0.10%(mol fraction) the intensity of the sample is the highest. The excitation spectra of all these samples show broad band spectra ranging from 300~500 nm peaking at about 342 nm. The emission spectra also exhibit a broad band peaking at 613 nm(CaTiO3∶Pr3 is 612 nm). XRD research indicates that the crystalline phases change due to the replacement of divalent metal ions.The research on the thermoluminescence spectra of Mg0.2Ca0.8TiO3∶Pr3 indicates that the peak is at 107.35 ℃ and the depth of the trap energy is about 0.852 eV.  相似文献   

17.
We described the synthesis and luminescence of Ca1.5Y1.5Al3.5Si1.5O12:Ce3+ phosphor for light emitting diode (LED). The crystal-linity, morphology, structure, and luminescence spectra were examined by X-ray diffraction, field emission-scanning electron microscopy and photoluminescence spectroscopy. The results showed that Ca1.5Y1.5Al3.5Si1.5O12:Ce3+ phase was a dominating phase with little impurity phase peaks of Y2O3 when the sintered temperature reached to 1400 oC. Field emission scanning electron microscopy (FE-SEM) images showed the particle size of the phosphor was about 3 μm. Meanwhile, the excitation and emission spectra indicated that the as-prepared phosphors could be effectively excited by blue (460 nm) light and the excitation spectrum showed a broad band extending from 400-500 nm, while emission spectrum showed a broad yellow band peaking at 534 nm. The decay curve at the emission peak consisted of fast and slow components. The Ca1.5Y1.5Al3.5Si1.5O12:Ce3+ should be a promising yellow phosphor for near blue-based white-light-emitting diodes (LEDs).  相似文献   

18.
The Ba3Y2(BO3)4:Eu^3+ phosphor was synthesized using a high temperature solid-state reaction method and the luminescent characteristics were investigated. The emission spectrum exhibited one strong red emission at 613 nm, corresponding to the electric dipole 5D0-TF2 transition of Eu^3+, under 365 nm excitation. The excitation spectrum of 613 nm indicated that the Ba3Y2(BO3)n:Eu^3+ phosphor was effectively excited by ultraviolet (UV) (254, 365 and 400 nm) and blue (470 nm) light. The effect of Eu^3+ concentration on the 613 nm emission of the Ba3Y2(BO3)n:Eu^3+ phosphor was measured. The results showed that the emission intensity increased with increasing Eu^3+ concentration, and then decreased. The CIE color coordinates of Ba3Y2(BO3)4:Eu^3+ phosphor were x=0.641 and y=0.359 at 15 mol.% Eu^3+.  相似文献   

19.
Luminescence Properties of Sm^3+ doped Bi2ZnB2O7   总被引:4,自引:0,他引:4  
The phosphors of (Bi1- x Smx ) 2ZnB2O7 ( x = 0. 01, 0. 03, 0. 05, 0. 07, and 0. 09) were synthesized by conventional solid state reaction. The purity of all samples was checked by X-ray powder diffraction (XRD). XRD analysis shows that all these compounds are of a single phase of Bi2ZnB2O7, indicating that the Bi^3+ in Bi2ZnB2O7 can be partly replaced by the Sm^3+ without the change of crystal structure. The excitation and emission spectra at room temperature show the typical 4f-4f transitions of Sm^3+ . The dominant excitation line is around 404 nm due to ^6H5/2→^4K11/2 and the emission spectrum consists of a series of lines at 563, 599, 646, and 704 nm due to ^4G5/2→^6H5/2, ^6H7/2, ^6H9/2, and ^6H11/2, respectively. The optimal concentration of Sm^3+ in Bi2ZnB2O7 is about 3mol% (relative to lmol Bi^3+ ) and the critical distance Rc was calculated as 2.1 nm. The temperature dependence of the emission intensity of Bi1.94Sm0.06ZnB2O7 was examined in the temperature range between 100 and 450 K. The quenching temperature where the intensity has dropped to half of the initial intensity is 280 K. The lifetime for Sm^3+ in Bi1.94Sm0.06ZnB2O7 is fitted as a value of 0.29 and 1.03 ms.  相似文献   

20.
Eu^3+-doped Gd2Mo3O9 was prepared by solid-state reaction method using Na2CO3 as flux and characterized by powder X-ray diffractometry. According to X-ray diffraction, this material belonged to a tetragonal system with space group I41/α. The effects of flux content and sintering temperature on the luminescent properties were investigated with the emission and excitation spectra. The results showed that flux content and sintering temperature had effects on the luminescent properties, the optimized flux content and the best temperature was 3 % and 800 ℃ respectively. The excitation and emission spectra also showed that this phosphor could be effectively excited by C-T band (280 nm), ultraviolet light 395 nm and blue light 465 nm. The wavelengths at 395 and 465 nm were nicely fitting in with the widely applied output wavelengths of ultraviolet or blue LED chips. Integrated emission intensity of Gd2Mo3O9 : Eu was twice higher than that of Y2O2S : Eu^3 + under 395 nm excitation. The Eu^3+ doped Gd2Mo309 phosphor may be a better candidate in solid-state lighting applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号