首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents experimental design and test results of the recently concluded 1-g inverted vertical outflow testing of two 325 × 2300 full scale liquid acquisition device (LAD) channels in liquid hydrogen (LH2). One of the channels had a perforated plate and internal cooling from a thermodynamic vent system (TVS) to enhance performance. The LADs were mounted in a tank to simulate 1-g outflow over a wide range of LH2 temperatures (20.3–24.2 K), pressures (100–350 kPa), and flow rates (0.010–0.055 kg/s). Results indicate that the breakdown point is dominated by liquid temperature, with a second order dependence on mass flow rate through the LAD. The best performance is always achieved in the coldest liquid states for both channels, consistent with bubble point theory. Higher flow rates cause the standard channel to break down relatively earlier than the TVS cooled channel. Both the internal TVS heat exchanger and subcooling the liquid in the propellant tank are shown to significantly improve LAD performance.  相似文献   

2.
This paper presents experiments and modeling of the most recent set of liquid acquisition device (LAD) vertical outflow tests conducted in liquid hydrogen. The Engineering Development Unit (EDU) was a relatively large tank (4.25 m3) used to mimic a storage tank for a cryogenic storage and transfer flight demonstration test. Six 1-g propellant tank outflow tests were conducted with a standard 325 × 2300 rectangular cross-section curved LAD channel conformal to the tank walls over a range of tank pressure (158–221 kPa), ullage temperature (22–39 K), and mass flow rate (0.0103–0.0187 kg/s) per arm. An analytical LAD channel solver, an exact solution to the Navier-Stokes equations, is used to model propellant outflow for the LAD channel. Results shows that the breakdown height of the LAD is dominated by liquid and ullage gas temperatures, with a secondary effect of flow rate. The best performance is always obtained by exposing the channel to cold pressurant gas and low flow rates, consistent with the cryogenic bubble point model. The model tracks the trends in the data and shows that the contribution of flow-through-screen pressure drop is minimized for bottom outflow in 1-g, versus the standard inverted outflow.  相似文献   

3.
J.M. Jurns  J.W. Hartwig 《低温学》2012,52(4-6):283-289
When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth’s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMDs) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122 K) as part of NASA’s continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures.  相似文献   

4.
A centrifugal cryogenic pump has been designed at Argonne National Laboratory to circulate liquid nitrogen (LN2) in a closed circuit allowing the recovery of excess fluid. The pump can circulate LN2 at rates of 2–10 L/min, into a head of 0.5–3 m. Over four years of laboratory use the pump has proven capable of operating continuously for 50–100 days without maintenance.  相似文献   

5.
A transfer system for liquid nitrogen (LN2) installed at National Synchrotron Radiation Research Center (NSRRC) to provide LN2 required for the superconducting equipment and experimental stations has a LN2 transfer line of length 160 m and pipeline of inner diameter 25 mm, a phase separator (250 L) and an automatic filling station. The end uses include two cryogenic systems, one Superconducting Radio Frequency (SRF) cavity, five superconducting magnets, monochromators for the beam line and filling of mobile Dewars. The transfer line is segmented and connected with bayonet couplings. The aim of this work was to investigate, by numerical simulation, the effects on the heat load of the gap thickness of the bayonet assembly and the thickness of vacuum insulation. A numerical correlation was created that has become a basis to minimize the head load for future design of bayonet couplings.  相似文献   

6.
《低温学》2006,46(2-3):98-104
Due to expansion at neighboring Cleveland Hopkins Airport, several NASA Glenn Research Center (GRC) facilities have been relocated to the Creek Road Complex. The complex consists of the Small Scale Multi-purpose Research Facility (SMiRF), Cryogenic Components Lab Cell 7 (CCL-7), and a shop building. The facilities have been updated and include state-of-the art technology. SMiRF is a liquid hydrogen/liquid nitrogen (LH2/LN2) test facility used to conduct research in a 7400 L vacuum chamber. The chamber simulates space environment and launch vehicle ascent profile. SMiRF handles 5680 L of LH2. CCL is a LH2/LN2 facility to perform small scale proof of concept tests for components and processes. It handles 1130 L of liquid hydrogen. Both facilities handle cryogens at sub-atmospheric pressures.  相似文献   

7.
LCH4 testing was conducted at the Marshall Space Flight Center using the multipurpose hydrogen test bed (MHTB) to evaluate the performance of a spray-bar thermodynamic vent system (TVS) with subcooled LCH4 and gaseous helium (GHe) pressurant. Thirteen days of testing were performed in November 2006, with total tank heat leak conditions of about 715 W and 420 W at a fill level of approximately 90%. A total of 23 TVS cycles were completed. The TVS successfully controlled the ullage pressure within a prescribed control band but did not maintain a stable liquid saturation pressure. This was likely due to a TVS design not optimized for this particular propellant and test conditions, and possibly due to a large artificially induced heat input directly into the liquid.  相似文献   

8.
Investigations of two different types of cryogenic level sensors (capacitance and High Temperature Superconductor (HTS) for level measurement of liquid nitrogen (LN2) and liquid oxygen (LOX) are presented here. They were tested for an active length of 400 mm in LOX and LN2. A discrete diode array level sensor was used as a primary standard for calibrating these sensors. Comparative studies on linearity, sensitivity and other parameters at the operating temperatures are presented.  相似文献   

9.
New vehicles need improved cryogenic propellant storage and transfer capabilities for long duration missions. Multilayer insulation (MLI) for cryogenic propellant feedlines is much less effective than MLI tank insulation, with heat leak into spiral wrapped MLI on pipes 3–10 times higher than conventional tank MLI. Better insulation for cryogenic feed lines is an important enabling technology that could help NASA reach cryogenic propellant storage and transfer requirements. Improved insulation for Ground Support Equipment could reduce cryogen losses during launch vehicle loading. Wrapped-MLI (WMLI) is a high performance multilayer insulation using innovative discrete spacer technology specifically designed for cryogenic transfer lines and Vacuum Jacketed Pipe (VJP) to reduce heat flux.The poor performance of traditional MLI wrapped on feed lines is due in part to compression of the MLI layers, with increased interlayer contact and heat conduction. WMLI uses discrete spacers that maintain precise layer spacing, with a unique design to reduce heat leak. A Triple Orthogonal Disk spacer was engineered to minimize contact area/length ratio and reduce solid heat conduction for use in concentric MLI configurations.A new insulation, WMLI, was developed and tested. Novel polymer spacers were designed, analyzed and fabricated; different installation techniques were examined; and rapid prototype nested shell components to speed installation on real world piping were designed and tested. Prototypes were installed on tubing set test fixtures and heat flux measured via calorimetry. WMLI offered superior performance to traditional MLI installed on cryogenic pipe, with 2.2 W/m2 heat flux compared to 26.6 W/m2 for traditional spiral wrapped MLI (5 layers, 77–295 K). WMLI as inner insulation in VJP can offer heat leaks as low as 0.09 W/m, compared to industry standard products with 0.31 W/m. WMLI could enable improved spacecraft cryogenic feedlines and industrial hot/cold transfer lines.  相似文献   

10.
《Vacuum》1999,52(1-2):23-26
We describe a UHV sample holder that allows fast heating and cooling cycles between 77 K and 1300 K. The system allows us to perform thermal treatment of a sample. The samples are heated by electron bombardment and the cooldown is achieved by liquid nitrogen (LN2). The sample holder is designed to be assembled in a multitechnique surface analysis apparatus that performs AES, SIMS, TDS and XPS analysis.  相似文献   

11.
Capillary tubes are extensively used in small refrigeration and air-conditioning systems with synthetic refrigerants and hydrocarbons. For CO2 transcritical applications, it has been shown that the capillary tube demonstrates an intrinsic capability of adjusting the upper pressure close to the optimal value in response to changes of gas-cooler heat sink temperature. The CO2 flow rate through four capillary tubes of various lengths, diameters and materials was measured in a test rig. Each capillary tube was tested with inlet pressure varying from 7.5 MPa to 11 MPa and inlet temperature from 20 °C to 40 °C. Outlet pressure varied from 1.5 MPa to 3 MPa. The experimental results were validated against different numerical and approximate analytical solutions of the capillary tube equations. These models give good predictions only if the friction factor of the capillary tube is calculated accounting for its dependence on the tube roughness.  相似文献   

12.
《Materials Letters》2007,61(14-15):3208-3210
We report here for the first time the temperature dependence of the electrical resistivity and heat capacity of nano-crystalline MgTiO3 geikielite of up to 1000 K. The temperature dependence of heat capacity of nano-crystalline geikielite expressed as Cp = 46.44(5) + 0.0502(2)T  4.56 × 106T2 + 1.423 × 103T 0.5  8.672 × 10 6T 2, where Cp = is specific heat expressed in J/mol. K and T is the temperature in K. Both the electrical resistivity and heat capacity behaviour show that the geikielite (both the natural and synthetic nano-crystalline samples) are stable and remains electrically insulating up to 1000 K.  相似文献   

13.
In this paper a new electrochemical method was proposed for the determination of adenosine-5′-triphosphate (ATP) based on a chitosan (CTS) and graphene (GR) composite film modified carbon ionic liquid electrode (CTS–GR/CILE). CILE was fabricated by using ionic liquid 1-butyl-3-methylimidazolium dihydrogen phosphate ([BMIM]H2PO4) as the binder, which was further modified by GR and CTS composite. The modified electrode exhibited an excellent electrocatalytic activity toward the oxidation of ATP with the increase of the oxidation peak current and the decrease of the oxidation peak potential. The electrochemical parameters of ATP on CTS–GR/CILE were calculated with the electron transfer coefficient (α) as 0.329, the electron transfer number (n) as 2.15, the apparent heterogeneous electron transfer rate constant (ks) as 3.705 × 10? 5 s? 1 and the surface coverage (ΓT) as 9.33 × 10? 10 mol cm? 2. Under the optimal conditions the oxidation peak current was proportional to ATP concentration in the range from 1.0 × 10? 6 to 1.0 × 10? 3 M with the detection limit of 0.311 μM (S/N = 3). The proposed electrode showed excellent reproducibility, stability, anti-interference ability and further successfully applied to the ATP injection sample detection.  相似文献   

14.
M.T. Kudlac  H.F. Weaver  M.D. Cmar 《低温学》2012,52(4-6):296-300
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Space Propulsion Research Facility, commonly referred to as B-2, is NASA’s third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs.A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility during pump down of the vacuum chamber, operation of the liquid nitrogen heat sink (or cold wall) and the infrared lamp array. A vacuum level of 1.3 × 10?4 Pa (1 × 10?6 torr) was achieved. The heat sink provided a uniform temperature environment of approximately 77 K (139°R) along the entire inner surface of the vacuum chamber. The recently rebuilt and modernized infrared lamp array produced a nominal heat flux of 1.4 kW/m2 at a chamber diameter of 6.7 m (22 ft) and along 11 m (36 ft) of the chamber’s cylindrical vertical interior. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface. The data acquired matched pretest predictions and demonstrated system functionality.  相似文献   

15.
《Materials Letters》2007,61(11-12):2499-2501
A single crystal of Tb: KLu(WO4)2 with dimensions of 40 mm × 40 mm × 18 mm has been grown by the top-seeded solution growth (TSSG) method. The color of the crystal is brown. Absorption and fluorescence spectra were measured at room temperature. The measured specific heat is a little lower than that of Yb: KLW (0.365 J/g K) at 90 °C. The measured mean linear coefficients of thermal expansion are αa = 17.1643 × 10 6 K 1, αa = 14.0896 × 10 6 K 1, αb = 8.7938 × 10 6 K 1, αc = 23.1745 × 10 6 K 1, αc = 20.2866 × 10 6 K 1. The results indicate that the crystal has a large anisotropy. The refractive index was measured.  相似文献   

16.
This paper reviews the status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. When we compare the consuming energy of hydrogen liquefaction with high pressurized hydrogen gas, FOM must be larger than 0.57 for hydrogen liquefaction. Thus, we need to develop a highly efficient liquefaction method. Magnetic refrigeration using the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency >50%, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system with >80% liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 s of the cycle. By using the simulation, we estimate the efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained for operation temperature between 20 K and 77 K including LN2 work input.  相似文献   

17.
《Vacuum》2011,85(12):1444-1447
A barrier structure consisting of SiOx and SiNx films was deposited on the polymer substrate at 80 °C via plasma-enhanced chemical vapor deposition (PECVD). However, the low radius of curvature (Rc) of the barrier-coated substrate may cause the inconvenience of the following fabrication processes. By depositing a 150 nm-SiNx film, the Rc of the barrier-coated polycarbonate (PC) substrate can increase from 80 to 115 mm without inducing any cracks in the barrier structure. Furthermore, the thermal stress of the barrier structure can be adjusted via extending the PECVD process duration in the chamber and replacing PC by the polyethersulone (PES) substrate. The Rc can increase to ∼356 mm by depositing the 150 nm-SiNx film on the other side of the PES substrate. Finally, the calcium test result of the barrier films/PES/SiNx sample was calculated to be around 3.05 × 10−6 g/m2/day, representing that the barrier structure did not fail after modification.  相似文献   

18.
Dense Bi1.5Y0.3Sm0.2O3–La0.8Sr0.2MnO3 ? δ hollow fiber membrane was fabricated by the combined phase inversion/sintering technique. The hollow fiber possessed an asymmetric structure. The oxygen permeability of the hollow fiber was measured by exposing its shell side to ambient air and sweeping the core side with helium to carry away the permeated oxygen. An oxygen permeation flux 3.9 × 10? 7 mol cm? 2 s? 1 was obtained at 850 °C under a gradient of air/helium. The oxygen permeation flux was related to the helium sweeping rate, the length of the hollow fiber and the oxygen partial pressure on the feed side, and can be further increased by modifying the membrane surfaces.  相似文献   

19.
For this study we focused on the front contact barrier height of HIT (ITO/a-Si:H(p)/a-Si:H(i)/c-Si(n)) solar cell. The ITO films with low resistivity of 1.425 × 10?4 Ω cm were deposited by pulsed DC magnetron sputtering as a function of substrate temperature (Ts). There were improvement in ΦITO from 4.15 to 4.30 eV and delta hole injection barrier from 0 to 0.129 eV for the HIT solar cell. The results show that the high values of ΦITO and the delta hole injection barrier at the front interface of ITO/p-layer lead to an increase of open circuit voltage (Voc), fill factor (FF) and efficiency (η). The performance of HIT device was improved with the increase of Ts and the best photo voltage parameters of the device were found to be Voc = 635 mV, FF = 0.737 and η = 14.33% for Ts = 200 °C.  相似文献   

20.
The Vuilleumier (VM) refrigerator, known as heat driven refrigerator, is one kind of closed-cycle Stirling type regenerative refrigerator. The VM refrigerator with power being supplied by liquid nitrogen was proposed by Hogen and developed by Zhou, which shows great potential for development below 10 K. This paper describes the experimental development of a VM cryocooler operating below 8 K, which was achieved by using liquid nitrogen as a heat sink of middle cavity. The regenerator was optimized by using a part of metallic magnetic regenerator material Er3Ni to replace the lead sphere and a no-load temperature of 7.8 K was obtained. Then all the lead spheres were replaced by Er0.6Pr0.4 material and a no-load temperature of 7.35 K was obtained, which is the lowest temperature for this kind of refrigerator reported so far. The cooling power at 10 K is about 500 mW with a pressure ratio near 1.6 and a charge pressure of 1.8 MPa. Especially, the magnetic material Er0.6Pr0.4 was found to be a potential substitution for the conventional lead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号