首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 802 毫秒
1.
The molecular chaperone Hsp90 is responsible for activation and stabilization of several oncoproteins in cancer cells, and has emerged as an important target in cancer treatment because of this pivotal role. In recent years, interests have arisen around structure‐based design of small molecules aimed at inhibiting the chaperone activity of Hsp90. In this review, we illustrate the recent advances in structure‐based and in silico strategies aimed at discovering and optimizing Hsp90 inhibitors.  相似文献   

2.
The molecular chaperone Hsp90 supports the functional activity of specific substrate proteins (clients). For client processing, the Hsp90 dimer undergoes a series of ATP-driven conformational rearrangements. Flexible linkers connecting the three domains of Hsp90 are crucial to enable dynamic arrangements. The long charged linker connecting the N-terminal (NTD) and middle (MD) domains exhibits additional functions in vitro and in vivo. The structural basis for these functions remains unclear. Here, we characterize the conformation and dynamics of the linker and NTD−MD domain interactions by NMR spectroscopy. Our results reveal two regions in the linker that are dynamic and exhibit secondary structure conformation. We show that these regions mediate transient interactions with strand β8 of the NTD. As a consequence, this strand detaches and exposes a hydrophobic surface patch, which enables binding to the p53 client. We propose that the charged linker plays an important regulatory role by coupling the Hsp90 NTD−MD arrangement with the accessibility of a client binding site on the NTD.  相似文献   

3.
The physiological function of free fatty acids (FFAs) has long been regarded as indirect in terms of their activities as educts and products in metabolic pathways. The observation that FFAs can also act as signaling molecules at FFA receptors (FFARs), a family of G protein-coupled receptors (GPCRs), has changed the understanding of the interplay of metabolites and host responses. Free fatty acids of different chain lengths and saturation statuses activate FFARs as endogenous agonists via binding at the orthosteric receptor site. After FFAR deorphanization, researchers from the pharmaceutical industry as well as academia have identified several ligands targeting allosteric sites of FFARs with the aim of developing drugs to treat various diseases such as metabolic, (auto)inflammatory, infectious, endocrinological, cardiovascular, and renal disorders. GPCRs are the largest group of transmembrane proteins and constitute the most successful drug targets in medical history. To leverage the rich biology of this target class, the drug industry seeks alternative approaches to address GPCR signaling. Allosteric GPCR ligands are recognized as attractive modalities because of their auspicious pharmacological profiles compared to orthosteric ligands. While the majority of marketed GPCR drugs interact exclusively with the orthosteric binding site, allosteric mechanisms in GPCR biology stay medically underexploited, with only several allosteric ligands currently approved. This review summarizes the current knowledge on the biology of FFAR1 (GPR40), FFAR2 (GPR43), FFAR3 (GPR41), FFAR4 (GPR120), and GPR84, including structural aspects of FFAR1, and discusses the molecular pharmacology of FFAR allosteric ligands as well as the opportunities and challenges in research from the perspective of drug discovery.  相似文献   

4.
Hsp90 is involved in correcting, folding, maturation and activation of a diverse array of client proteins; it has also been implicated in the treatment of cancer in recent years. In this work, comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), molecular docking and molecular dynamics were performed on three different series of Hsp90 inhibitors to build 3D-QSAR models, which were based on the ligand-based or receptor-based methods. The optimum 3D-QSAR models exhibited reasonable statistical characteristics with averaging internal q(2) > 0.60 and external r(2) (pred) > 0.66 for Benzamide tetrahydro-4H-carbazol-4-one analogs (BT), AT13387 derivatives (AT) and Dihydroxylphenyl amides (DA). The results revealed that steric effects contributed the most to the BT model, whereas H-bonding was more important to AT, and electrostatic, hydrophobic, H-bond donor almost contributed equally to the DA model. The docking analysis showed that Asp93, Tyr139 and Thr184 in Hsp90 are important for the three series of inhibitors. Molecular dynamics simulation (MD) further indicated that the conformation derived from docking is basically consistent with the average structure extracted from MD simulation. These results not only lead to a better understanding of interactions between these inhibitors and Hsp90 receptor but also provide useful information for the design of new inhibitors with a specific activity.  相似文献   

5.
Hsp90 is one of the most abundant chaperone proteins in the cytosol. In an ATP-dependent manner it plays an essential role in the folding and activation of a range of client proteins involved in signal transduction and cell cycle regulation. We used NMR shift perturbation experiments to obtain information on the structural implications of the binding of AMP-PNP (adenylyl-imidodiphosphate-a non-hydrolysable ATP analogue), ADP and the inhibitors radicicol and geldanamycin. Analysis of (1)H,(15)N correlation spectra showed a specific pattern of chemical shift perturbations at N210 (ATP binding domain of Hsp90, residues 1-210) upon ligand binding. This can be interpreted qualitatively either as a consequence of direct ligand interactions or of ligand-induced conformational changes within the protein. All ligands show specific interactions in the binding site, which is known from the crystal structure of the N-terminal domain of Hsp90. For AMP-PNP and ADP, additional shift perturbations of residues outside the binding pocket were observed and can be regarded as a result of conformational rearrangement upon binding. According to the crystal structures, these regions are the first alpha-helix and the "ATP-lid" ranging from amino acids 85 to 110. The N-terminal domain is therefore not a passive nucleotide-binding site, as suggested by X-ray crystallography, but responds to the binding of ATP in a dynamic way with specific structural changes required for the progression of the ATPase cycle.  相似文献   

6.
DnaK is a member of the Hsp70 family of molecular chaperones. This molecular machine couples the binding and hydrolysis of ATP to binding and release of substrate proteins. The switches that are involved in allosteric communication within this multidomain protein are mostly unknown. Previous insights were largely obtained by mutants, which displayed either wild-type activity or reduced folding assistance of substrate proteins. With a directed evolution approach for improved folding assistance we selected a DnaK variant characterized by a glycine to alanine substitution at position 384 (G384A); this resulted in a 2.5-fold higher chaperone activity in an in vitro DnaK-assisted firefly luciferase refolding assay. Quantitative biochemical characterization revealed several changes of key kinetic parameters compared to the wild type. Most pronounced is a 13-fold reduced rate constant for substrate release in the ATP-bound state, which we assume, in conjunction with the resulting increase in substrate affinity, to be related to improved chaperone activity. As the underlying mechanistic reason for this change we propose an altered interface of allosteric communication of mutant G384A, which is notably located at a hinge position between nucleotide and substrate binding domain.  相似文献   

7.
Enzymes and ribozymes constitute two classes of biological catalysts. The activity of many natural enzymes is regulated by the binding of ligands that have different structures than their substrates; these ligands are consequently called allosteric effectors. In most allosteric enzymes, the allosteric binding site lies far away from the active site. This implies that communication pathways must exist between these sites. While mechanisms of allosteric regulation were developed more than forty years ago, they continue to be revisited regularly. The improved understanding of these mechanisms has led in the past two decades to projects to transform several unregulated enzymes into allosterically regulated ones either by rational design or directed evolution techniques. More recently, ribozymes have also been the object of similar successful engineering efforts. In this review, after briefly summarising recent progress in the theories of allosteric regulation, several strategies to engineer allosteric regulations in enzymes and ribozymes are described and compared. These redesigned biological catalysts find applications in a variety of areas.  相似文献   

8.
Inhibition of the molecular chaperone heat shock protein 90 (Hsp90) represents a promising approach for cancer treatment. BIIB021 is a highly potent Hsp90 inhibitor with remarkable anticancer activity; however, its clinical application is limited by lack of potency and response. In this study, we aimed to investigate the impact of replacing the hydrophobic moiety of BIIB021, 4-methoxy-3,5-dimethylpyridine, with various five-membered ring structures on the binding to Hsp90. A focused array of N7/N9-substituted purines, featuring aromatic and non-aromatic rings, was designed, considering the size of hydrophobic pocket B in Hsp90 to obtain insights into their binding modes within the ATP binding site of Hsp90 in terms of π–π stacking interactions in pocket B as well as outer α-helix 4 configurations. The target molecules were synthesized and evaluated for their Hsp90α inhibitory activity in cell-free assays. Among the tested compounds, the isoxazole derivatives 6b and 6c, and the sole six-membered derivative 14 showed favorable Hsp90α inhibitory activity, with IC50 values of 1.76 µM, 0.203 µM, and 1.00 µM, respectively. Furthermore, compound 14 elicited promising anticancer activity against MCF-7, SK-BR-3, and HCT116 cell lines. The X-ray structures of compounds 4b, 6b, 6c, 8, and 14 bound to the N-terminal domain of Hsp90 were determined in order to understand the obtained results and to acquire additional structural insights, which might enable further optimization of BIIB021.  相似文献   

9.
Metabotropic glutamate receptors (mGlu) are class C G protein-coupled receptors of eight subtypes that are omnipresently expressed in the central nervous system. mGlus have relevance in several psychiatric and neurological disorders, therefore they raise considerable interest as drug targets. Allosteric modulators of mGlus offer advantages over orthosteric ligands owing to their increased potential to achieve subtype selectivity, and this has prompted discovery programs that have produced a large number of reported allosteric mGlu ligands. However, the optimization of allosteric ligands into drug candidates has proved to be challenging owing to induced-fit effects, flat or steep structure-activity relationships and unexpected changes in theirpharmacology. Subtle structural changes identified as molecular switches might modulate the functional activity of allosteric ligands. Here we review these switches discovered in the metabotropic glutamate receptor family..  相似文献   

10.
11.
Heat‐shock protein 90 (Hsp90) is a molecular chaperone involved in the stabilization of key oncogenic signaling proteins, and therefore, inhibition of Hsp90 represents a new strategy in cancer therapy. 2‐Amino‐7‐[4‐fluoro‐2‐(3‐pyridyl)phenyl]‐4‐methyl‐7,8‐dihydro‐6H‐quinazolin‐5‐one oxime is a racemic Hsp90 inhibitor that targets the N‐terminal adenosine triphosphatase site. We developed a method to resolve the enantiomers and evaluated their inhibitory activity on Hsp90 and the consequent antitumor effects. The (S) stereoisomer emerged as a potent Hsp90 inhibitor in biochemical and cellular assays. In addition, this enantiomer exhibited high oral bioavailability in mice and excellent antitumor activity in two different human cancer xenograft models.  相似文献   

12.
The ClC-2 channel plays a critical role in maintaining ion homeostasis in the brain and the testis. Loss-of-function mutations in the ClC-2-encoding human CLCN2 gene are linked to the white matter disease leukodystrophy. Clcn2-deficient mice display neuronal myelin vacuolation and testicular degeneration. Leukodystrophy-causing ClC-2 mutant channels are associated with anomalous proteostasis manifesting enhanced endoplasmic reticulum (ER)-associated degradation. The molecular nature of the ER quality control system for ClC-2 protein remains elusive. In mouse testicular tissues and Leydig cells, we demonstrated that endogenous ClC-2 co-existed in the same protein complex with the molecular chaperones heat shock protein 90β (Hsp90β) and heat shock cognate protein (Hsc70), as well as the associated co-chaperones Hsp70/Hsp90 organizing protein (HOP), activator of Hsp90 ATPase homolog 1 (Aha1), and FK506-binding protein 8 (FKBP8). Further biochemical analyses revealed that the Hsp90β-Hsc70 chaperone/co-chaperone system promoted mouse and human ClC-2 protein biogenesis. FKBP8 additionally facilitated membrane trafficking of ClC-2 channels. Interestingly, treatment with the Hsp90-targeting small molecule 17-allylamino-17-demethoxygeldanamycin (17-AAG) substantially boosted ClC-2 protein expression. Also, 17-AAG effectively increased both total and cell surface protein levels of leukodystrophy-causing loss-of-function ClC-2 mutant channels. Our findings highlight the therapeutic potential of 17-AAG in correcting anomalous ClC-2 proteostasis associated with leukodystrophy.  相似文献   

13.
Protein design aims to understand the fundamentals of protein structure by creating novel proteins with pre-specified folds. An equally important goal is to understand protein function by creating novel proteins with pre-specified activities. Here we describe the design and characterization of a tetratricopeptide (TPR) protein, which binds to the C-terminal peptide of the eukaryotic chaperone Hsp90. The design emphasizes the importance of both direct, short-range protein-peptide interactions and of long-range electrostatic optimization. We demonstrate that the designed protein binds specifically to the desired peptide and discriminates between it and the similar C-terminal peptide of Hsp70.  相似文献   

14.
15.
The 70 kDa and 90 kDa heat shock proteins Hsp70 and Hsp90 are two abundant and highly conserved ATP-dependent molecular chaperones that participate in the maintenance of cellular homeostasis. In Escherichia coli, Hsp90 (Hsp90Ec) and Hsp70 (DnaK) directly interact and collaborate in protein remodeling. Previous work has produced a model of the direct interaction of both chaperones. The locations of the residues involved have been confirmed and the model has been validated. In this study, we investigate the allosteric communication between Hsp90Ec and DnaK and how the chaperones couple their conformational cycles. Using elastic network models (ENM), normal mode analysis (NMA), and a structural perturbation method (SPM) of asymmetric and symmetric DnaK-Hsp90Ec, we extract biologically relevant vibrations and identify residues involved in allosteric signaling. When one DnaK is bound, the dominant normal modes favor biological motions that orient a substrate protein bound to DnaK within the substrate/client binding site of Hsp90Ec and release the substrate from the DnaK substrate binding domain. The presence of one DnaK molecule stabilizes the entire Hsp90Ec protomer to which it is bound. Conversely, the symmetric model of DnaK binding results in steric clashes of DnaK molecules and suggests that the Hsp90Ec and DnaK chaperone cycles operate independently. Together, this data supports an asymmetric binding of DnaK to Hsp90Ec.  相似文献   

16.
Molecular chaperones are crucial for cellular life to ensure that all proteins obtain their right fold and functionality. Many chaperones promiscuously bind a wide spectrum of client proteins, ranging from nascent to quasi-native and native proteins. Several recent studies have investigated, at atomic resolution, how chaperones interact with native proteins. Native proteins feature a wide variety of structural conformations, and therefore, a given chaperone cannot accomplish full surface complementarity to all of its client proteins. This limitation is circumvented by the recognition of frustrated regions on the client protein surface by the chaperone. In this interaction mode, the chaperone forms a multitude of transient local interactions with some segments of the client, whereas other parts are transiently not in favorable interactions. A permanent rearrangement of the client conformation on the chaperone occurs. Reconfiguration on the chaperone surface also gives the client a chance to fold into its correct, minimally frustrated conformation.  相似文献   

17.
Allostery is a basic principle of control of enzymatic activities based on the interaction of a protein or small molecule at a site distinct from an enzyme's active center. Allosteric modulators represent an alternative approach to the design and synthesis of small‐molecule activators or inhibitors of proteases and are therefore of wide interest for medicinal chemistry. The structural bases of some proteinaceous and small‐molecule allosteric protease regulators have already been elucidated, indicating a general mechanism that might be exploitable for future rational design of small‐molecule effectors.  相似文献   

18.
The CXCR3 receptor, a class A G protein‐coupled receptor (GPCR), is involved in the regulation and trafficking of various immune cells. CXCR3 antagonists have been proposed to be beneficial for the treatment of a wide range of disorders including but not limited to inflammatory and autoimmune diseases. The structure‐based design of CXCR3 ligands remains, however, hampered by a lack of structural information describing in detail the interactions between an allosteric ligand and the receptor. We designed and synthesized photoactivatable probes for the structural and functional characterization, using photoaffinity labeling followed by mass spectrometry, of the CXCR3 allosteric binding pocket of AMG 487 and RAMX3, two potent and selective CXCR3 negative allosteric modulators. Photoaffinity labeling is a common approach to elucidate binding modes of small‐molecule ligands of GPCRs through the aid of photoactivatable probes that convert to extremely reactive intermediates upon photolysis. The photolabile probe N‐[({1‐[3‐(4‐ethoxyphenyl)‐4‐oxo‐3,4‐dihydropyrido[2,3‐d]pyrimidin‐2‐yl]ethyl}‐2‐[4‐fluoro‐3‐(trifluoromethyl)phenyl]‐N‐{1‐[4‐(3‐(trifluoromethyl)‐3H‐diazirin‐3‐yl]benzyl}piperidin‐4‐yl)methyl]acetamide ( 10 ) showed significant labeling of the CXCR3 receptor (80 %) in a [3H]RAMX3 radioligand displacement assay. Compound 10 will serve as an important tool compound for the detailed investigation of the binding pocket of CXCR3 by mass spectrometry.  相似文献   

19.
Degraders have illustrated that compound-induced proximity to E3 ubiquitin ligases can prompt the ubiquitination and degradation of disease-relevant proteins. Hence, this pharmacology is becoming a promising alternative and complement to available therapeutic interventions (e. g., inhibitors). Degraders rely on protein binding instead of inhibition and, hence, they hold the promise to broaden the druggable proteome. Biophysical and structural biology approaches have been the cornerstone of understanding and rationalizing degrader-induced ternary complex formation. Computational models have now started to harness the experimental data from these approaches with the aim to identify and rationally help design new degraders. This review outlines the current experimental and computational strategies used to study ternary complex formation and degradation and highlights the importance of effective crosstalk between these approaches in the advancement of the targeted protein degradation (TPD) field. As our understanding of the molecular features that govern drug-induced interactions grows, faster optimizations and superior therapeutic innovations for TPD and other proximity-inducing modalities are sure to follow.  相似文献   

20.
Mutations in the Na-K-2Cl co-transporter NKCC2 lead to type I Bartter syndrome, a life-threatening kidney disease. We previously showed that export from the ER constitutes the limiting step in NKCC2 maturation and cell surface expression. Yet, the molecular mechanisms involved in this process remain obscure. Here, we report the identification of chaperone stress 70 protein (STCH) and the stress-inducible heat shock protein 70 (Hsp70), as two novel binding partners of the ER-resident form of NKCC2. STCH knock-down increased total NKCC2 expression whereas Hsp70 knock-down or its inhibition by YM-01 had the opposite effect. Accordingly, overexpressing of STCH and Hsp70 exerted opposite actions on total protein abundance of NKCC2 and its folding mutants. Cycloheximide chase assay showed that in cells over-expressing STCH, NKCC2 stability and maturation are heavily impaired. In contrast to STCH, Hsp70 co-expression increased NKCC2 maturation. Interestingly, treatment by protein degradation inhibitors revealed that in addition to the proteasome, the ER associated degradation (ERAD) of NKCC2 mediated by STCH, involves also the ER-to-lysosome-associated degradation pathway. In summary, our data are consistent with STCH and Hsp70 having differential and antagonistic effects with regard to NKCC2 biogenesis. These findings may have an impact on our understanding and potential treatment of diseases related to aberrant NKCC2 trafficking and expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号