首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the potential use of lower grade coals in an IGCC-CCS plant that generates electricity and produces hydrogen simultaneously with carbon dioxide capture and storage. The paper underlines one of the main advantages of gasification technology, namely the possibility to process lower grade coals, which are more widely available than the high-grade coals normally used in European power plants. Based on a proposed plant concept that generates about 400 MW net electricity with a flexible output of 0–50 MWth hydrogen and a carbon capture rate of at least 90%, the paper develops fuel selection criteria for coal fluxing and blending of various types of coal for optimizing plant performance e.g. oxygen consumption, hydrogen production potential, specific syngas energy production per tonne of oxygen consumed, etc. These performance indicators were calculated for a number of case studies through process flow simulations. The main conclusion is that blending of coal types of higher and lower grade is more beneficial in terms of operation and cost performance than fluxing high-grade coals.  相似文献   

2.
This paper evaluates biomass and solid wastes co-gasification with coal for energy vectors poly-generation with carbon capture. The evaluated co-gasification cases were evaluated in term of key plant performance indicators for generation of totally or partially decarbonized energy vectors (power, hydrogen, substitute natural gas, liquid fuels by Fischer–Tropsch synthesis). The work streamlines one significant advantage of gasification process, namely the capability to process lower grade fuels on condition of high energy efficiency. Introduction in the evaluated IGCC-based schemes of carbon capture step (based on pre-combustion capture) significantly reduces CO2 emissions, the carbon capture rate being higher than 90% for decarbonized energy vectors (power and hydrogen) and in the range of 47–60% for partially decarbonized energy vectors (SNG, liquid fuels). Various plant concepts were assessed (e.g. 420–425 MW net power with 0–200 MWth flexible hydrogen output, 800 MWth SNG, 700 MWth liquid fuel, all of them with CCS). The paper evaluates fuel blending for optimizing gasification performance. A detailed techno-economic evaluation for hydrogen and power co-generation with CCS was also presented.  相似文献   

3.
This paper evaluates hydrogen and power co-generation based on direct coal chemical looping systems with total decarbonization of the fossil fuel. As an illustrative example, an iron-based chemical looping system was assessed in various plant configurations. The designs generate 300–450 MW net electricity with flexible hydrogen output in the range of 0–200 MWth (LHV). The capacity of evaluated plant concepts to have a flexible hydrogen output is an important aspect for integration in modern energy conversion systems. The carbon capture rate of evaluated concepts is almost total (>99%). The paper presents in details evaluated plant configurations, operational aspects as well as mass and energy integration issues. For comparison reason, a syngas-based chemical looping concept and Selexol®-based pre-combustion capture configuration were also presented. Direct coal chemical looping configuration has significant advantages compared with syngas-based looping systems as well as solvent-based carbon capture configurations, the more important being higher energy efficiency, lower (or even zero) oxygen consumption and lower plant complexity. The results showed a clear increase of overall energy efficiency in comparison to the benchmark cases.  相似文献   

4.
The adoption of new environmentally responsible technologies, as well as, energy efficiency improvements in equipment and processes help to reduce CO2 rate emission into the atmosphere, contributing in delaying the consequences of intensive use of fossil fuels. For more effective actions, it is necessary to make the transition from the fossil-based to the renewable source economy. In this context, hydrogen fuel has a special role as clean vector of energy. Hydrogen has the potential to be decisive in mitigating greenhouse gas emissions, but fossil fuels high profitability due to global energy dependency actually drives the global economy.While renewable energy sources are not worldwide fully established, new technologies should be developed and used for the recovery of energetic streams nowadays wasted, to decarbonize hydrocarbons and to improve systems efficiency creating a path that can help nations and industries in the needed energy economy transition. Hydrogen gas can be generated by various methods from different sources such as coal and water. Currently, almost all of the hydrogen production is for industrial purpose and comes from the Steam Reforming, while the use of hydrogen in fuel cells is only incipient.The article analysis the plasma pyrolysis of hydrocarbons as a decarbonization option to contribute as a step towards hydrogen economy. It presents the Carbon Black and Hydrogen Process (CB&H Process) as an alternative option for hydrogen generation at large scale facility, suitable for supplying large amounts of high-purity carbon in elemental form. CB&H Process refers to a plant with hydrogen thermal plasma reactor able to decompose Hydrocarbons (HC's) into Hydrogen (H2) and Carbon Black (CB), a cleaner technology than its competing processes, capable of generating two products with high added value. Considering the Brazilian context in which more than 80% of the generated electricity comes from renewable sources, the use of electricity as one of the inputs in the process does not compromise the objective of reducing greenhouse gas emissions. It is important to consider that the use of renewable energy to produce two products derived from fossil fuels in a clean way represents integration of technologies into a more efficient system and an arrangement that contributes to the transition from fossil fuels to renewables.The economic viability of the CB&H process as a hydrogen generation unit (centralized) for refining applications also depends on the cost of hydrogen production by competing processes. Steam Methane Reforming (SMR) is a widespread method that produces twice the amount of hydrogen generated by natural gas plasma pyrolysis, but it emits CO2 gas and consumes water, while CB&H process produces solid carbon. For this reason, the paper seeks the carbon production cost by plasma pyrolysis as a breakeven point for large-scale hydrogen generation without water consumption and carbon dioxide emissions.  相似文献   

5.
Biomass energy is one of humanity's earliest sources of energy particularly in rural areas where it is often the only accessible and affordable source of energy. Worldwide biomass ranks fourth as an energy resource, providing approximately 14% of the world's energy needs all human and industrial processes produce wastes, that is, normally unused and undesirable products of a specific process. Generation and recovery of solid wastes varies dramatically from country to country and deserves special mention. The burning velocity of pulverized biomass fuels is considerably higher than that of coals. The use of biomass fuels provides substantial benefits as far as the environment is concerned. Biomass absorbs carbon dioxide during growth, and emits it during combustion. Utilization of biomass as fuel for power production offers the advantage of a renewable and CO2-neutral fuel. Although the structural, proximate and ultimate analyses results of biomass and wastes differ considerably, some properties of the biomass samples such as the hydrogen content, the sulfur content and the ignition temperatures changed in a narrow interval.  相似文献   

6.
This paper evaluates hydrogen and power co-generation based on coal-gasification fitted with an iron-based chemical looping system for carbon capture and storage (CCS). The paper assess in details the whole hydrogen and power co-production chain based on coal gasification. Investigated plant concepts of syngas-based chemical looping generate about 350–450 MW net electricity with a flexible output of 0–200 MWth hydrogen (based on lower heating value) with an almost total decarbonisation rate of the coal used.  相似文献   

7.
The German Bundestag decided June 30, 2011 to shut down by 2022 stepwise the complete national nuclear power plant capacity which at the time of decision generated some 22% of the nation’s electricity demand. This presentation tries to present a technology forecast of three potential compensations 1) energy and exergy efficiency gains, 2) renewable energies, and 3) hydrogen energy, thereby bearing in mind that fossil fuels such as coal, mineral oil and natural gas will by no means be gone after that short 10 year transition time. Consequently, not only the three compensations, but also fossil fuels – now efficient to the technological utmost – have to meet the obligation of reducing anthropogenic environmental and climate changing influences, and, in Germany’s case with 75% of its energy demand covered by imports of great importance, try to decrease the almost life risking high import rate by distributing suppliers all over the world and start introducing global clean renewable energies and trade in renewable hydrogen energy. Whether SUNRISE will evolve into a paragon for all those nations thinking of, planning for, or already taking the first steps towards saying farewell to nuclear is too early to determine. The four components of energy sustainability compensating for nuclear – energy and exergy efficiency gains, clean fossil, solar and hydrogen – pluck up courage, make headway and leave nuclear behind. And, in particular, hydrogen energy is and will increasingly become humankind’s common cause!  相似文献   

8.
This study investigates the overall feasibility of large energy storages with hydrogen as energy carrier onsite with a pre-combustion carbon capture and storage coal gasification plant and assesses the general impacts of such a backup installation on an electricity generation system with high wind power portion. The developed system plant configuration consists of four main units namely the gasification unit, main power unit, backup power unit including hydrogen storage and ancillary power unit. Findings show that integrating a backup storage in solid or gaseous hydrogen storage configuration allows to store excessive energy under high renewable power output or low demand and to make use of the stored energy to compensate low renewable output or high power demand. The study concludes that the developed system configuration reaches much higher load factors and efficiency levels than a plant configuration without backup storage, which simply increases its power unit capacity to meet the electricity demand. Also from an economical point of view, the suggested system configurations are capable to achieve lower electricity generation costs.  相似文献   

9.
Biomass is one of the renewable energy resources which can be used instead of fossil fuels to diminish environment pollution and emission of greenhouse gases. Hydrogen as a biomass is considered as an alternative fuel which can be derived from a variety of domestically available primary sources. In this paper, a hydrogen and electricity co-generation plant with rice husk is proposed. Rice husk with water vapor and oxygen produces syngas in gasifier. In this design, electricity is generated by using two Rankine cycles. The Results show that the net electric efficiency and hydrogen production efficiency are 1.5% and 40.0%, respectively. Hydrogen production is 1.316 kg/s in case which carbon dioxide is gathered and stored. The electricity generation is 5.923 MWe. The main propose of implementing Rankine cycle is to eliminate hydrogen combustion for generating electricity and to reduce NOx production. Furthermore, three kinds of membranes are studied in this paper.  相似文献   

10.
Gasification is a promising conversion technology to deliver high energy efficiency simultaneously with low energy and cost penalties for carbon capture. This paper is devoted to in-depth economic evaluations of pre- and post-combustion Calcium Looping (CaL) configurations for Integrated Gasification Combined Cycle (IGCC) power plants. The poly-generation capability, e.g. hydrogen and power co-generation, is also discussed. The post-combustion CaL option is a gasification power plant in which the flue gases from the gas turbine are treated for CO2 capture in a carbonation–calcination cycle. In pre-combustion CaL option, the Sorbent Enhanced Water Gas Shift (SEWGS) feature is used to produce hydrogen which is used for power generation. As benchmark case, a conventional gasification power plant without carbon capture was considered. Net power output of evaluated cases is in the range of 550–600 MW with more than 95% carbon capture rate. The pre-combustion capture configuration was evaluated also in hydrogen and power co-generation scenario. The evaluations are concentrated for estimation of capital costs, specific investment cost, operational & maintenance (O&M) costs, CO2 removal and avoidance costs, electricity costs, sensitivity analysis of technical and economic assumptions on key economic indicators etc.  相似文献   

11.
Because of its fuel flexibility and high efficiency, pressurized oxy‐fuel combustion has recently emerged as a promising approach for efficient carbon capture and storage. One of the important options to design the pressurized oxy‐combustion is to determine method of coal (or other solid fuels) feeding: dry feeding or wet (coal slurry) feeding as well as grade of coals. The main aim of this research is to investigate effects of coal characteristics including wet or dry feeding on the performance of thermal power plant based on the pressurized oxy‐combustion with CO2 capture versus atmospheric oxy‐combustion. A commercial process simulation tool (gCCS: the general carbon capture and storage) was used to simulate and analyze an advanced ultra‐supercritical(A‐USC) coal power plant under pressurized and atmospheric oxy‐fuel conditions. The design concept is based on using pure oxygen as an oxidant in a pressurized system to maximize the heat recovery through process integration and to reduce the efficiency penalty because of compression and purification units. The results indicate that the pressurized case efficiency at 30 bars was greater than the atmospheric oxy‐fuel combustion (base line case) by 6.02% when using lignite coal firing. Similarly, efficiency improvements in the case of subbituminous and bituminous coals were around 3% and 2.61%, respectively. The purity of CO2 increased from 53.4% to 94% after compression and purification. In addition, the study observed the effects of coal‐water slurry using bituminous coal under atmospheric conditions, determining that the net plant efficiency decreased by 3.7% when the water content in the slurry increased from 11.12% to 54%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The controversial and highly emotional discussion about biofuels in recent years has shown that greenhouse gas2 (GHG) emissions can only be evaluated in an acceptable way by carrying out a full life cycle assessment (LCA) taking the overall life cycle including all necessary pre-chains into consideration. Against this background, the goal of this paper is it to analyse the overall life cycle of a hydrogen production and provision. A state of the art hydrogen refuelling station in Hamburg/Germany opened in February 2012 is therefore taken into consideration. Here at least 50% hydrogen from renewable sources of energy is produced on-site by water electrolysis based on surplus electricity from wind (mainly offshore wind parks) and water. The remaining other 50% of hydrogen to be sold by this station mainly to hydrogen-fuelled buses is provided by trucks from a large-scale production plant where hydrogen is produced from methane or glycerol as a by-product of the biodiesel production. These two pathways are compared within the following explanations with hydrogen production from biomass and from coal. The results show that – with the goal of reducing GHG emissions on a life cycle perspective – hydrogen production based on a water electrolysis fed by electricity from the German electricity mix should be avoided. Steam methane reforming is more promising in terms of GHG reduction but it is still based on a finite fossil fuel. For a climatic sound provision of hydrogen as a fuel electricity from renewable sources of energy like wind or biomass should be used.  相似文献   

13.
Understanding the scale and nature of hydrogen's potential role in the development of low carbon energy systems requires an examination of the operation of the whole energy system, including heat, power, industrial and transport sectors, on an hour-by-hour basis. The Future Energy Scenario Assessment (FESA) software model used for this study is unique in providing a holistic, high resolution, functional analysis, which incorporates variations in supply resulting from weather-dependent renewable energy generators. The outputs of this model, arising from any given user-definable scenario, are year round supply and demand profiles that can be used to assess the market size and operational regime of energy technologies. FESA was used in this case to assess what - if anything - might be the role for hydrogen in a low carbon economy future for the UK.In this study, three UK energy supply pathways were considered, all of which reduce greenhouse gas emissions by 80% by 2050, and substantially reduce reliance on oil and gas while maintaining a stable electricity grid and meeting the energy needs of a modern economy. All use more nuclear power and renewable energy of all kinds than today's system. The first of these scenarios relies on substantial amounts of ‘clean coal’ in combination with intermittent renewable energy sources by year the 2050. The second uses twice as much intermittent renewable energy as the first and virtually no coal. The third uses 2.5 times as much nuclear power as the first and virtually no coal.All scenarios clearly indicate that the use of hydrogen in the transport sector is important in reducing distributed carbon emissions that cannot easily be mitigated by Carbon Capture and Storage (CCS). In the first scenario, this hydrogen derives mainly from steam reformation of fossil fuels (principally coal), whereas in the second and third scenarios, hydrogen is made mainly by electrolysis using variable surpluses of low-carbon electricity. Hydrogen thereby fulfils a double facetted role of Demand Side Management (DSM) for the electricity grid and the provision of a ‘clean’ fuel, predominantly for the transport sector. When each of the scenarios was examined without the use of hydrogen as a transport fuel, substantially larger amounts of primary energy were required in the form of imported coal.The FESA model also indicates that the challenge of grid balancing is not a valid reason for limiting the amount of intermittent renewable energy generated. Engineering limitations, economic viability, local environmental considerations and conflicting uses of land and sea may limit the amount of renewable energy available, but there is no practical limit to the conversion of this energy into whatever is required, be it electricity, heat, motive power or chemical feedstocks.  相似文献   

14.
In this paper, the modern biomass-based transportation fuels such as fuels from Fischer–Tropsch synthesis, bioethanol, fatty acid (m)ethylester, biomethanol, and biohydrogen are briefly reviewed. Here, the term biofuel is referred to as liquid or gaseous fuels for the transport sector that are predominantly produced from biomass. There are several reasons for bio-fuels to be considered as relevant technologies by both developing and industrialized countries. They include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. The term modern biomass is generally used to describe the traditional biomass use through the efficient and clean combustion technologies and sustained supply of biomass resources, environmentally sound and competitive fuels, heat and electricity using modern conversion technologies. Modern biomass can be used for the generation of electricity and heat. Bioethanol and biodiesel as well as diesel produced from biomass by Fischer–Tropsch synthesis are the most modern biomass-based transportation fuels. Bio-ethanol is a petrol additive/substitute. It is possible that wood, straw and even household wastes may be economically converted to bio-ethanol. Bio-ethanol is derived from alcoholic fermentation of sucrose or simple sugars, which are produced from biomass by hydrolysis process. Currently crops generating starch, sugar or oil are the basis for transport fuel production. There has been renewed interest in the use of vegetable oils for making biodiesel due to its less polluting and renewable nature as against the conventional petroleum diesel fuel. Biodiesel is a renewable replacement to petroleum-based diesel. Biomass energy conversion facilities are important for obtaining bio-oil. Pyrolysis is the most important process among the thermal conversion processes of biomass. Brief summaries of the basic concepts involved in the thermochemical conversions of biomass fuels are presented. The percentage share of biomass was 62.1% of the total renewable energy sources in 1995. The reduction of greenhouse gases pollution is the main advantage of utilizing biomass energy.  相似文献   

15.
The curbing of greenhouse gases (GHG) is an important issue on the international political agenda. The substitution of fossil fuels by renewable energy sources is an often-advocated mitigation strategy. Wind energy is a potential renewable energy source. However, wind energy is not reliable since its electricity production depends on variable weather conditions. High wind energy penetration rates lead to losses due to power plant operation adjustments to wind energy. This research identifies the potential energetic benefits of integrated hydrogen production in electricity systems with high wind energy penetration. This research concludes that the use of system losses for hydrogen production via electrolysis is beneficial in situations with ca. 8 GW or more wind energy capacity in the Netherlands. The 2020 Dutch policy goal of 6 GW will not benefit from hydrogen production in terms of systems efficiency. An ancillary beneficial effect of coupling hydrogen production with wind energy is to relieve the high-voltage grid.  相似文献   

16.
Hydrogen will play an integral role in achieving net-zero emissions by 2050. Many studies have been focusing on green hydrogen, but this method is highly electricity intensive. Alternatively, methane pyrolysis can produce hydrogen without direct CO2 emissions and with modest electricity inputs, serving as a bridge from fossil fuels to renewable energies. Microwaves are an efficient method of adding the required energy for this endothermic reaction. This study introduces a new method of CO2-free hydrogen production via non-plasma methane pyrolysis using microwaves and carbon products of this process. Carbon particles in the fluidized bed absorb microwave energy and create a hot medium (>1200 °C) in contact with flowing methane. As a result, methane decomposes into hydrogen and solid carbon achieving over 90% hydrogen selectivity with ∼500 cumulative hours of experiments This modular pyrolysis system can be built anywhere with access to natural gas and electricity, enabling distributed hydrogen production.  相似文献   

17.
Alternative technologies in combination with thermal power plant allow the production of heat, electricity and hydrogen using renewable energy sources in combination with gas or coal, as a very important energy source in traditional energy engineering in Slovenia. The technologies aim, inter alia, to reduce greenhouse gas emissions, increase the use of renewable energy sources and take a step forward to the production of hydrogen as an alternative energy source in numerous applications. In view of the estimated demand for heat, electricity and hydrogen in the Savinja-?alek region, Slovenia, the technologies to meet such demand are proposed in this article from a technical perspective. An energy and economic analysis of the operation of the Thermal Power Plant (TPP) will be done. The TPP is operating in a variable operating regime. The possibility of stationary operation of the power plant will be analysed, the surplus of produced electricity will be used for the hydrogen production. The process is based on the Rankine-Clausius cycle (RC) with dual superheating using water or steam as the working media. The idea in this article, is to generate in the above mentioned facility as much hydrogen, heat, cold and electricity as needed by the Savinja-?alek region in industry, transport, etc. Thus, the power plant could operate optimally, constantly at 100% of power, which would allow simultaneous production of electricity, heat and hydrogen. Hydrogen could be used for sale on the market or for the electricity production or for heating. Hydrogen could be produced via electrolysis or thermochemical process. In the second part of article, the analysis of RC with concentrated solar energy and wood chips was analysed.  相似文献   

18.
We have developed a state-scale version of the MARKAL energy optimization model, commonly used to model energy policy at the US national scale and internationally. We apply the model to address state-scale impacts of a renewable electricity standard (RES) and a carbon tax in one southeastern state, Georgia. Biomass is the lowest cost option for large-scale renewable generation in Georgia; we find that electricity can be generated from biomass co-firing at existing coal plants for a marginal cost above baseline of 0.2–2.2 cents/kWh and from dedicated biomass facilities for 3.0–5.5 cents/kWh above baseline. We evaluate the cost and amount of renewable electricity that would be produced in-state and the amount of out-of-state renewable electricity credits (RECs) that would be purchased as a function of the REC price. We find that in Georgia, a constant carbon tax to 2030 primarily promotes a shift from coal to natural gas and does not result in substantial renewable electricity generation. We also find that the option to offset a RES with renewable electricity credits would push renewable investment out-of-state. The tradeoff for keeping renewable investment in-state by not offering RECs is an approximately 1% additional increase in the levelized cost of electricity.  相似文献   

19.
Future electricity production will use fossil-free sources with zero CO2 emission or closed carbon cycle technologies based on renewable sources. While hydrogen is considered a key energy source, its production at present time relies heavily on fossil fuels. Furthermore, distribution and storage are not well established and require substantial investments. This is a strong motivation to identify alternative, safe, high power density hydrogen carriers, where existing logistics and infrastructure can be utilized. In this contribution, ammonia and biogas are considered for high-efficient electricity production in solid oxide fuel cells (SOFCs). It is demonstrated that the properties and operating conditions of SOFC allow for direct use of these fuels, with fuel pretreatment inside the SOFC anode. The high efficient electricity production using pure ammonia or real biogas was successfully proven on state-of-the-art SOFCs. Even without optimization of operating parameters, electrical efficiencies of 40–50% and high and stable power output were demonstrated.  相似文献   

20.
In Lithuania, the generation of electricity is based on the nuclear energy and on the fossil fuels. After the decommissioning of Ignalina nuclear power plant in 2009, the Lithuanian Power Plant and other thermal plants will become the major sources of electricity. Consequently, the Lithuanian power sector must focus on the implementation of renewable energy projects, penetration of new technologies and on consideration of the future opportunities for renewables, and Government policy for promoting this kind of energy. Production of electricity from renewable energy is based on hydro, biomass and wind energy resources in Lithuania. Due to the typical climatic condition in Lithuania the solar photovoltaics and geothermal energy are not used for power sector. Moreover, the further development of hydropower plants is limited by environmental restrictions, therefore priority is given to wind energy development and installation of new biomass power plants. According to the requirements set out in the Directive 2001/77/EC of the European Parliament and of the Council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market [Official Journal L283, 33–40, 27 October 2001], 7% of gross consumption of electricity will be generated from renewable energy by 2010 in Lithuania. The aim of this paper is to show the estimation of the maximum renewable power penetration in the Lithuanian electricity sector and possible environmental impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号