首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study demonstrates that, besides sulfur deprivation, sustained H2 photoproduction in Chlamydomonas reinhardtii cultures can be generated by incubating algae under phosphorus-deprived (−P) conditions. However, phosphorus deficiency in algal cells could not be obtained by resuspension of algae in −P medium, evidently due to a significant reserve of phosphorus in cells. In this study, phosphorus deficiency was accomplished by inoculating the washed algae into the −P medium at low initial cell densities (below 2 mg Chl l−1). After the initial growth period, where cells utilize intracellular phosphorus, algae established anaerobic environment followed by the period of H2 photoproduction. The maximum H2 output (∼70 ml l−1) was obtained in cultures with the initial Chl content ∼1 mg l−1. Cultures with Chl above 2 mg l−1 did not produce H2 gas. The physiological response of algal cultures to phosphorus deprivation demonstrated significant similarities with the response of algae to sulfur depletion.  相似文献   

2.
Photoproduction of H2 gas was examined in the Chlamydomonas reinhardtii tla1 strain, CC-4169, containing a truncated light-harvesting antenna, along with its parental CC-425 strain. Although enhanced photosynthetic performance of truncated antenna algae has been demonstrated previously (Polle et al. Planta 2003; 217:49-59), improved H2 photoproduction has yet to be reported. Preliminary experiments showed that sulfur-deprived, suspension cultures of the tla1 mutant could not establish anaerobiosis in a photobioreactor, and thus, could not photoproduce H2 gas under conditions typical for the sulfur-deprived wild-type cells (Kosourov et al. Biotech Bioeng 2002; 78:731-40). However, they did produce H2 gas when deprived of sulfur and phosphorus after immobilization within thin (∼300 μm) alginate films. These films were monitored for long-term H2 photoproduction activity under light intensities ranging from 19 to 350 μE m−2 s−1 PAR. Both the tla1 mutant and the CC-425 parental strain produced H2 gas for over 250 h under all light conditions tested. Relative to the parental strain, the CC-4169 mutant had lower maximum specific rates of H2 production at low and medium light intensities (19 and 184 μE m−2 s−1), but it exhibited a 4-times higher maximum specific rate at 285 μE m−2 s−1 and an 8.5-times higher rate at 350 μE m−2 s−1 when immobilized at approximately the same cell density as the parental strain. As a result, the CC-4169 strain accumulated almost 4-times more H2 than CC-425 at 285 μE m−2 s−1 and over 6-times more at 350 μE m−2 s−1 during 250-h experiments. These results are the first demonstration that truncating light-harvesting antennae in algal cells can increase the efficiency of H2 photoproduction in mass culture at high light intensity.  相似文献   

3.
The green alga Chlamydomonas reinhardtii can produce hydrogen gas (H2) in the presence of the proton uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The addition of 15 μM CCCP to the algal cultures led to 13-fold increase in H2 photoproduction compared to the control cultures without CCCP treatment. CCCP completely inhibited the photochemical activity of photosystem (PS) II under illumination. In order to better understand metabolic conditions necessary for sustained H2 production, we have used gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF) for metabolomics analysis that is independent of nutritional stress, specifically, sulfur deprivation, which had been used previously to induce H2 photoproduction. Even 10 min after addition of CCCP, metabolites from many metabolic modules were found drastically decreased, including levels of free amino acids, unsaturated free fatty acids and nucleotides. During prolonged CCCP exposure H2 production was found to be stable for at least 12 h with a continued increase in levels of free fatty acids. These results indicate that CCCP might become a useful treatment for production of biohydrogen in reactors. The increase in fatty acid production might then be a useful addition for production of carbon-derived biofuels.  相似文献   

4.
The aim of this study was to understand the enhancement mechanism of H2 photoproduction in Chlorella protothecoides under simultaneous nitrogen limitation and sulfur deprivation (LNS). Nitrogen limitation (LN) rather than sulfur deprivation significantly inhibited relative variable fluorescence at K-step (WK) and J-step (VJ), photochemical efficiency of PSII (photosystem II), Fv/Fm, during the process of incubation in the light. Under such conditions, photosynthetic O2 evolution decreased and the anaerobiosis was established after 12 h of incubation. The algae generated large amounts of H2 under nitrogen limitation but generated only trace amounts under sulfur deprivation. Obviously, nitrogen limitation rather than sulfur deprivation was the decisive factor that induced H2 photoproduction in C. protothecoides under LNS. The LNS culture generated much more H2 than the LN culture in the presence of DCMU during incubation, suggesting that a PSII-independent electron source contributed many more electrons for transfer to hydrogenase in the LNS culture. PSII electron transport includes linear electron flow (LEF) and cyclic electron flow (CEF) of PSII in C. protothecoides. In the PSII-dependent electron source for H2 photoproduction, PSII supplies electrons to hydrogenase through the LEF. The LNS culture showed much higher LEF and lower CEF than the LN culture during the H2 photoproduction phase, as indicated by the large lower quantum yield of PSII electron transport (ΦPSII) in the LNS culture in the presence of DCMU. Therefore, compared with nitrogen limitation, simultaneous nitrogen limitation and sulfur deprivation enhanced H2 photoproduction in C. protothecoides mainly due to enhanced PSII-dependent and -independent electron sources.  相似文献   

5.
The H2-sensing system of Rhodobacter capsulatus was engineered to elicit a fluorescent response upon cell exposure to H2. The system is surprisingly sensitive to H2 and is capable of detecting levels of H2 down to 200 pM in solution, which approximates the background concentration of H2 in water exposed to the earth’s atmosphere. The response was roughly linear between 0.3 and 300 ppm V of added headspace H2 and gave a Kapp of 142 nM H2, when cells were grown anaerobically for 12 h in the presence of H2. Hydrogen-sensing R. capsulatus cells were grown fermentatively in the dark in co-culture with Chlamydomonas reinhardtii on microtiter plates and the bacteria fluoresced in proportion to H2 production by the algae. This represents a promising, high-throughput assay for H2 production in algal libraries, and an enhanced capability for developing H2 as a clean and renewable fuel.  相似文献   

6.
H2 photoproduction, hydrogenase activities and PSII photochemical activities in Chlorella protothecoides under sulfur (S–) or nitrogen (N–) deprivation or simultaneous N-limitation and S-deprivation were studied. C. protothecoides pre-cultured in full nutrient TAP medium containing 7 mM NH4Cl was found to produce a detectable but low level of H2, once the cells were inoculated either in S-free or N-free medium. However, cells pre-grown in a low concentration of NH4Cl (0.35 and 0.7 mM) generated a large amount of H2 after transfer to N-limited and S-free medium. The maximal H2 outputs of ∼233.7 and ∼129.1 ml/l were obtained within 100 h in the cultures exposed to S-deprived medium containing 0.35 mM and 0.7 mM NH4Cl, with the average H2 production rates being ∼2.19 and ∼1.37 ml/l/h, respectively. Our studies further indicated that N-limitation resulted in considerable starch accumulation, chlorophyll synthesis reduction, photosynthetic electron transfer block and oxygen evolving complex (OEC) injury, as well as attenuation in PSII oxygenic activity. Significant starch degradation was not observed during the H2 photoevolution process. Attenuation of PSII O2 evolution favored a rapid establishment of anaerobiosis for hydrogenase induction. Meanwhile, a constant high level of hydrogenase activities in C. protothecoides exposed to simultaneous N-limitation and S-deprivation were measured. Based on the above results, a possible mechanism of high H2 photoproduction in C. protothecoides exposed to N-limitation and S-deprivation was discussed. Low net photosynthetic oxygenic rates, together with high hydrogenase activities were thought to contribute to the enhancement of H2 photoproduction by C. protothecoides.  相似文献   

7.
The green algae Сhlamydomonas reinhardtii entrapped in a thin alginate film have been shown to sustain elevated rates of hydrogen photoproduction under anaerobic incubation in sulfur/phosphorus depleted tris-acetate medium. In the present work we studied mechanisms, underlying hydrogen photoproduction by the immobilized culture, particularly, the roles of PSII and starch accumulation/breakdown. DCMU, a specific inhibitor of electron transport in PSII, is known to suppress hydrogen evolution by circa 80% in suspension cultures of S-deprived C. reinhardtii. In immobilized cells DCMU caused successive stimulatory and inhibitory effects on hydrogen photoproduction, both depending on the deprivation status of the algal cell. The inhibitory effect of DCMU was 25% at 70 h of S deficiency when maximal rates of hydrogen photoproduction were observed. Measurements of the light-induced prompt and delayed chlorophyll fluorescence transients and reflectance at 820 nm (P700 redox transitions) revealed very rapid decline of PSII activity in the entrapped S-deprived cells as compared with the suspension culture, whereas PSI suffered less. The immobilized culture showed a high capacity to accumulate starch during early stages of S deprivation and relatively high rates of anaerobic starch degradation during the following hydrogen evolution period. DCMU partly inhibited starch breakdown. Results of the present work brought us to the conclusion that PSII-independent pathway of hydrogen evolution is elevated in the immobilized S-deprived cells rather due to the rapid inactivation of PSII, efficient starch catabolism and non-photochemical PQ reduction.  相似文献   

8.
Renewable H2 photoproduction by green algae such as Chlamydomonas reinhardtii is a promising system for solar fuels. However, large-scale application of the system has lagged virtually due to lack of high H2-producing strains. We previously identified ferredoxin-NADP+ reductase (FNR) among the 105 proteins differentially expressed in Chlamydomonas during sulfur-deprived H2 photoproduction. In this work, we used an RNA interference (RNAi) approach to generate Chlamydomonas mutant strains with reduced levels of FNR. We found that fnr-RNAi strains exhibited higher rates of H2 photoproduction (2.5-fold) than wild type under sulfur-deprived condition. To elucidate the basis for this increase, we analyzed the physiological characteristics of the fnr-RNAi strains under such condition. Major changes, due to the down-regulation of FNR, included the lower rates of photosynthetic O2 evolution (44%), greater reduction of Rubisco amounts (60%) and higher rates of starch degradation (140%). These may result in an earlier onset of anaerobiosis and increased electron supply to the hydrogenases in the mutant strains. The results provide new information of FNR in regulating H2 metabolism as well as potential strains for further improvement of the organism toward application in solar-powered systems.  相似文献   

9.
Biomass of the green algae has been recently an attractive feedstock source for bio-fuel production because the algal carbohydrates can be derived from atmospheric CO2 and their harvesting methods are simple. We utilized the accumulated starch in the green alga Chlamydomonas reinhardtii as the sole substrate for fermentative hydrogen (H2) production by the hyperthermophilic eubacterium Thermotoga neapolitana. Because of possessing amylase activity, the bacterium could directly ferment H2 from algal starch with H2 yield of 1.8–2.2 mol H2/mol glucose and the total accumulated H2 level from 43 to 49% (v/v) of the gas headspace in the closed culture bottle depending on various algal cell-wall disruption methods concluding sonication or methanol exposure. Attempting to enhance the H2 production, two pretreatment methods using the heat-HCl treatment and enzymatic hydrolysis were applied on algal biomass before using it as substrate for H2 fermentation. Cultivation with starch pretreated by 1.5% HCl at 121 °C for 20 min showed the total accumulative H2 yield of 58% (v/v). In other approach, enzymatic digestion of starch by thermostable α-amylase (Termamyl) applied in the SHF process significantly enhanced the H2 productivity of the bacterium to 64% (v/v) of total accumulated H2 level and a H2 yield of 2.5 mol H2/mol glucose. Our results demonstrated that direct H2 fermentation from algal biomass is more desirably potential because one bacterial cultivation step was required that meets the cost-savings, environmental friendly and simplicity of H2 production.  相似文献   

10.
In this study we described the isolation of eight new strains of purple non-sulfur bacteria resistant to salinity ≥30 g L−1 and high concentration of VFAs (200 mM). These strains were characterized by their general physiological properties and the occurrence of hupSL genes. Some correlation was observed between the rate of H2 photoproduction, the absence of hupSL genes and hydrogenase activity. Two fast-growing strains without hupSL genes showed high nitrogenase activity and hydrogen accumulation during growth on Ormerod medium. These strains were capable of H2 photoproduction using non-treated dark culture (75% in water) after dark fermentation of starch at 30 g L−1, unlike control strains, Rhodobacter capsulatus B10 and Rb. sphaeroides GL. New N7 and 13 strains identified as Rb. sphaeroides can be recommended for application in a two-stage H2 production system.  相似文献   

11.
Efficient conversion of glycerol waste from biodiesel manufacturing processes into biohydrogen by the hyperthermophilic eubacterium Thermotoga neapolitana DSM 4359 was investigated. Biohydrogen production by T. neapolitana was examined using the batch cultivation mode in culture medium containing pure glycerol or glycerol waste as the sole substrate. Pre-treated glycerol waste showed higher hydrogen (H2) production than untreated waste. Nitrogen (N2) sparging and pH control were successfully implemented to maintain the culture pH and to reduce H2 partial pressure in the headspace for optimal growth rate and to enhance hydrogen production from the glycerol waste. It was found that hydrogen production increased from 1.24 ± 0.06 to 1.98 ± 0.1 mol-H2 mol−1 glycerolconsumed by optimising N2 sparging and pH control. We observed that in medium containing 0.05 M HEPES, with three cycles of N2 sparging, the H2 yield increased to 2.73 ± 0.14 mol-H2 mol−1 glycerolconsumed, which was 2.22-fold higher than the non-N2 sparged H2 yield (1.23 ± 0.06 mol-H2 mol−1 glycerolconsumed).  相似文献   

12.
Defined co-cultures of hydrogen (H2) producers belonging to Citrobacter, Enterobacter, Klebsiella and Bacillus were used for enhancing the efficiency of biological H2 production. Out of 11 co-cultures consisting of 2–4 strains, two co-cultures composed of Bacillus cereus EGU43, Enterobacter cloacae HPC123, and Klebsiella sp. HPC793 resulted in H2 yield up to 3.0 mol mol−1 of glucose. Up-scaling of the reactor by 16-fold resulted in a corresponding increase in H2 production with an actual evolution of 7.44 L of H2. It constituted 58.2% of the total biogas. Continuous culture evolution of H2 by co-cultures (B. cereus EGU43 and E. cloacae HPC123) immobilized on ligno-cellulosic materials resulted in 6.4-fold improvement in H2 yield compared to free floating bacteria. This synergistic influence of B. cereus and E. cloacae can offer a better strategy for H2 production than undefined or mixed cultures.  相似文献   

13.
Under sulfur-deprived conditions, the metabolism of Chlamydomonas reinhardtii switches to the photoproduction of hydrogen. This process is sustained by both photosystem II-driven water splitting and by the fermentation of stored carbohydrates. We investigated the possibility of using diluted pretreated olive mill wastewaters (OMW), which contain organic acids and sugars, as a substrate on which to grow Chlamydomonas, in order to obtain suitable biomass to produce hydrogen. The cells grown on a mixture of pretreated OMW and TAP (tris-acetate-phosphate) (50% dilution) were found to be richer in carbohydrates and exhibited a greater production of hydrogen (150 ml H2 l−1 culture), compared to the control cells (100 ml H2 l−1 culture). In these cultures, the hydrogen production process was characterized by a shorter aerobic phase and a longer hydrogen-production period. The results offer a useful perspective for the utilization of olive mill wastewaters, which constitute an environmental problem, particularly in Mediterranean areas, and for increasing the output for hydrogen production with Chlamydomonas.  相似文献   

14.
Phase transformations during dynamic dehydrogenation of Ti1−xVxH2 (x = 0.1; 0.2; 0.3) were studied using in situ Synchrotron X-Ray Diffraction (SR XRD) and non-isothermal kinetics experiments. The main dehydrogenation path for γ-Ti1−xVxH2 was found to be γ → δ → β → βalloy. Body-centred tetragonal δ-hydride was found to be an intermediate phase of the γ → β transformation in Ti0.8–0.9V0.1–0.2H2. TDS, in situ SR XRD and isoconversional kinetics studies showed that hydrogen desorption from Ti1−xVxH2 is composed of simultaneous reactions taking place between 300 and 600 °C. The effective activation energy of hydrogen desorption depends on the vanadium contents and the reaction pathway, increasing from 21 kJ/mol H2 (γ → δ) to 60–110 kJ/mol H2 (δ → β).  相似文献   

15.
Molecular hydrogen (H2) production by Escherichia coli was studied during mixed carbon sources (glucose and glycerol) fermentation at pH 7.5 and pH 5.5. H2 production rate (VH2) by bacterial cells grown on mixed carbon was assayed with either adding glucose (glucose assay) or glycerol (glycerol assay) and compared with the cells grown on sole carbon (glucose or glycerol only) and appropriately assayed. Wild type cells grown on mixed carbon, in the assays with adding glucose, produced H2 at pH 7.5 with the same level as in the cells grown on glucose only. At pH 7.5 VH2 in fhlA single and fhlA hyfG double mutants decreased ∼6.5 and ∼7.9 fold, respectively. In wild type cells grown on mixed carbon VH2 at pH 5.5 was lowered ∼2 fold, compared to the cells grown on glucose only. But in hyfG and hybC single mutants VH2 was decreased ∼2 and ∼1.6 fold, respectively. However, at pH 7.5, in the assays with glycerol, VH2 was low, when compared to the cells grown on glycerol only. At pH 5.5 in the assays with glycerol VH2 was absent. Moreover, VH2 in wild type cells was inhibited by 0.3 mM N,N-dicyclohexylcarbodiimide (DCCD), an inhibitor of the F0F1-ATPase, in a pH dependent manner. At pH 7.5 in wild type cells VH2 was decreased ∼3 fold but at pH 5.5 the inhibition was ∼1.7 fold. At both pHs in fhlA mutant VH2 was totally inhibited by DCCD. Taken together, the results obtained indicate that at pH 7.5, in the presence of glucose, glycerol can also be fermented. They point out that Hyd-4 mainly and Hyd-2 to some extent contribute in H2 production by E. coli during mixed carbon fermentation at pH 5.5 whereas Hyd-1 is only responsible for H2 oxidation.  相似文献   

16.
In this study, a pilot solar tubular photobioreactor was successfully implemented for fed batch operation in outdoor conditions for photofermentative hydrogen production with Rhodobacter capsulatus (Hup) mutant. The bacteria had a rapid growth with a specific growth rate of 0.052 h−1 in the batch exponential phase and cell dry weight remained in the range of 1–1.5 g/L throughout the fed batch operation. The feeding strategy was to keep acetic acid concentration in the photobioreactor at the range of 20 mM by adjusting feed acetate concentration. The maximum molar productivity obtained was 0.40 mol H2/(m3 h) and the yield obtained was 0.35 mol H2 per mole of acetic acid fed. Evolved gas contained 95–99% hydrogen and the rest was carbon dioxide by volume.  相似文献   

17.
An ORF cDNA fragment of one of leghemoglobin genes, lba was cloned from Glycine max and transferred into chloroplasts of Chlamydomonas reinhardtii. More rapidly O2 consumption, lower O2 content and higher H2 output were monitored in the transgenic algal cultures than those in WT cultures either in S-free or S-containing medium. Maximum expression of lba in the transgenic algae consisted with the time when minimal O2 contents and maximal H2 evolution occurred. The highest H2 production achieved in sulfur-free medium for both algal cultures. When restoring sulfate in the medium, H2 production in the transgenic algal cultures kept steadily around 130–145 μl per bottle while that in WT cultures decreased gradually from 98 μl per bottle at 12.5 μM sulfate to 40 μl per bottle at 100 μM sulfate. The results indicated that heteroexpression of lehemoglaobin genes in chloroplasts of green algae improved H2 yield by decreasing O2 content in the medium. This protein had potential to be used in improvement of H2 production in green algae.  相似文献   

18.
The effect of coculture of Clostridium butyricum and Escherichia coli on hydrogen production was investigated. C. butyricum and E. coli were grown separately and together as batch cultures. Gas production, growth, volatile fatty acid production and glucose degradation were monitored. Whilst C. butyricum alone produced 2.09 mol-H2/mol-glucose the coculture produced 1.65 mol-H2/mol-glucose. However, the coculture utilized glucose more efficiently in the batch culture, i.e., it was able to produce more H2 (5.85 mmol H2) in the same cultivation setting than C. butyricum (4.62 mmol H2), before the growth limiting pH was reached.  相似文献   

19.
Under certain conditions, cyanobacteria can switch from photosynthesis to hydrogen production, which is a good energy carrier. However, the biological diversity of hydrogen-releasing cyanobacteria has a great unexplored potential. This study is aimed to investigate the ability of new strains of cyanobacteria Cyanobacterium sp. IPPAS B-1200, Dolichospermum sp. IPPAS B-1213, and Sodalinema gerasimenkoae IPPAS B-353 to release H2 and to evaluate the effects of photosystem II inhibitor 3-(3,4-dichlorphenyl)-1,1-dimethylurea (DCMU) on H2 production under light and dark conditions. The results showed that cultures treated with DCMU produced several times more H2 than untreated cells. The highest rate of H2 photoproduction of 4.24 μmol H2 (mg Chl a h)?1 was found in a Dolichospermum sp. IPPAS B-1213 culture treated with 20 μM DCMU.  相似文献   

20.
Glycerol was used as a substrate for H2 production by bacterium Enterobacter aerogenes in the test tubes and bioreactor. A BioFlo/CelliGen 115 bioreactor (10 L working volume) was utilized to conduct the experiments for conversion of glycerol into H2 by E. aerogenes cells. The highest H2 production rate was observed under 2% glycerol in the culture medium. The glycerol uptake efficiency by bacteria in the bioreactor was found to be 65% during the 6 day period, matching glycerol uptake efficiency observed in the test tubes experiment (65%).Hydrogen production from glycerol (2% glycerol, v/v) by E. aerogenes in the bioreactor and test tubes was measured over the 6 days, showing the maximal H2 rate at 650 mL g−1 dry weight h−1. The yield of H2 production from glycerol at 0.89 mol/mol in the bioreactor was high, corresponding to the theoretical yield of 1 mol of H2 per 1 mol of glycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号