首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
硅纳米线的制备技术   总被引:1,自引:0,他引:1  
硅纳米线作为一种新型的一维纳米材料,在纳米电子器件、光电器件及集成电路方面具有很好的应用前景。介绍了硅纳米线在制备方面的国内外研究现状与进展,重点讨论了基于金属催化气-液-固(VLS)生长机理、氧化物辅助生长机理的硅纳米线制备及模板法等制备硅纳米线的研究成果、特点及生长机理。与金属催化VLS生长机理相比,氧化物辅助生长硅纳米线不需要金属催化剂,能避免金属污染,保证了硅纳米线的纯度,因而是今后深入研究的方向。  相似文献   

2.
An investigation was carried out into the growth mechanisms for atypical forms of silicon nanowires (Si-NWs) synthesized using a vapor-liquid-solid growth process assisted by hydrogen radicals. Sn or Au nanoparticles, which act as catalysts during Si-NW growth, were produced by hydrogen radical treatment of Sn or Au thin films covering a silicon substrate. The Si-NWs were synthesized from silane gas excited by hydrogen radicals in the presence of these nanoparticle catalysts. In addition to normal Si-NW structures, atypical forms such as tapered, branched, bent, corrugated and block types, were synthesized. The growth of tapered, branched and bent-type Si-NWs was caused by contraction of the catalytic nanoparticles, adhesion of nanoparticles to the side wall of growing Si-NWs, and non-uniform supersaturation of the nanoparticles with Si, respectively. Growth of corrugated- and block-type Si-NWs was induced by an excess supply of Si atoms to the growing Si-NWs.  相似文献   

3.
With rapid progress in nanotechnology, nanostructured materials have come closer to our life. Single-component nanowires are actively investigated because of their novel properties, attributed to their nanoscale dimensions and adjustable aspect ratio, but their technical limitations cannot be resolved easily. Heterostructured nanomaterials gained attention as alternatives because they can improve the existing single-component structure or add new functions to it. Among them, barcode nanowires (BNWs), comprising at least two different functional segments, can perform multiple functions for use in biomedical sensors, information encoding and security, and catalysts. BNW applications require reliable response to the external field. Hence, researchers have been attempting to improve the reliability of synthesis and regulate the properties precisely. This article highlights the recent progress and prospects for the synthesis, properties, and applications of metallic BNWs with focus on the dependence of the magnetic, optical, and mechanical properties on material, composition, shape, and microstructure.  相似文献   

4.
以乙酰丙酮铂(Pt(acac)2)、乙酰丙酮镍(Ni(acac)2)为前驱体,三正辛基氧膦(TOPO)为表面修饰剂,油胺(OAm)为还原剂,N,N-二甲基甲酰胺(DMF)为助剂,超导碳科琴黑ECP为载体,采用液相合成法制备了碳载PtNi合金纳米催化剂(Pt2.7Ni/C)。通过TEM对其形貌进行表征,ICP-AES进行定性和定量分析,XRD对其结构进行表征,并进行电化学阴极氧还原催化性能研究。研究表明:所制备的Pt2.7Ni/C纳米催化剂粒径分布在3~11 nm之间,平均粒径为6.25 nm;在酸性条件下,当电位在0.9 V(vs.RHE)时,Pt2.7Ni/C纳米催化剂的质量比活性为796.08 mA·mgPt-1,为商业Pt/C(JM)催化剂的约4.0倍,面积比活性为3.60 mA·cm-2,为商业Pt/C(JM)催化剂的约11.3倍。同时在经过5000和10 000次的加速耐久性实验后,Pt2.7...  相似文献   

5.
Amorphous SiOx nanowires, with diameters of ∼20 nm and lengths of tens of μm, were grown from self-organized GeSi quantum dots or GeSi alloy epilayers on Si substrates. The morphologies and yield of these amorphous nanowires depend strongly upon the synthesis temperature. Comparative experiments indicate that the present SiOx nanowires are induced by metallic Ge as catalysts via the solid liquid solid growth mechanism. Two broad peaks centered at 410 nm and 570 nm were observed in photoluminescence spectrum, indicating that such SiOx nanowires have the potential applications in white light-emitting diodes, full-colour display, full-colour indicator and light sources.  相似文献   

6.
A novel lanthanon seed was employed as the catalyst for the growth of GaN nanowires. Large-scale GaN nanowires have been synthesized successfully through ammoniating Ga2O3/Tb films sputtered on Si(111) substrates. Scanning electron microscopy, x-ray diffraction, high-resolution transmission electron microscopy, and Fourier transform infrared spectroscopy were used to characterize the samples. The results demonstrate that the nanowires are single-crystal hexagonal wurtzite GaN. The growth mechanism of GaN nanowires is also discussed.  相似文献   

7.
A contribution to the problem of the influence of Si, N and B on the scaling resistance and high temperature strength of austenitic CrNi steels Laboratory and field rests (up to 5000 hrs in an enamelling stove) into the scaling behaviour of alloyed steels, with a particular view to a possible reduction of the Ni content. From the steels – Cr23Ni18, Cr25Ni20Si2, Cr23Ni13, Cr23Ni13Si2, Cr23Ni13Si2N and Cr23Ni13Si2B – the type Cr25Ni20Si2 has the highest, Cr23Ni13 the lowest oxidation resistance. Addition of Si has a negative effect, in particular on creep resistance at high temperatures, while oxidation resistance is improved. In cases of simultaneous thermal and mechanical loads boron additions are preferable. In cases of alternating temperature changes under mechanical stress alloying with nitrogen appears most promising.  相似文献   

8.
在高纯氮气气氛中采用有机前驱体热解法合成了氮化硅纳米线,对氮化硅纳米线所进行的详细的微观表征表明它们具有良好的单晶特性,其生长沿着α-Si_3N_4的[1010]方向并受VS机制所控制.在室温下用325 nm激光对样品激发,观察到样品有很宽的强光致发光带,在实验中用肉眼即能观察到从样品所发出的强光.考虑到通过稀土掺杂(如引入Nd、Eu、Er和Yb)等手段能够降低氮化硅纳米结构的能带从而进一步调控其光学性能,可以相信氮化硅纳米线在防伪发光材料领域将有着广阔的开发潜力.  相似文献   

9.
采用化学气相沉积的方法,以Zn粉末为原料,CuSe纳米粒子为催化剂,在Si衬底上成功制备了毫米级ZnSe纳米线。用X射线衍射、EDS和SEM对产物的结构、成分和形貌进行了测试与表征。结果表明:生长的ZnSe纳米线为立方闪锌矿结构,长度达0.35~0.7mm,Zn和Se的摩尔比为1?0.97,其室温光致发光谱显示在325nm波长激发下,ZnSe纳米线在439nm处呈现自由激子的强烈发射,表明生长的ZnSe纳米线具有高的结晶质量。纳米线生长符合氧化还原反应下的气液固生长机制,并证明Cu3Zn合金充当了实际的ZnSe纳米线生长催化剂。  相似文献   

10.
Novel indium nitride(In N)leaf-like nanosheets and nanowires have been grown on Si substrate by chemical vapor deposition method.The characterization results indicate that the samples are single-crystalline,and the growth direction of the nanowires and nanoleaves is[0001].The growth mechanism of the In N nanoleaves is following the pattern of vapor–liquid–solid process with a three-step growth process.In addition,the room temperature photoluminescence spectra of two nanostructures show band-to-band emissions around 0.706 e V,where the emission from single nanoleaf is stronger than nanowire,showing potential for applications in optoelectronic devices.  相似文献   

11.
Ni catalysts for direct methanol fuel cells (DMFCs) based on carbon nanotube and Vulcan XC-72 carbon black (VCB) were prepared and their catalytical activity was investigated for DMFCs. The deposition was used to prepare Ni/CNTs and Ni/VCB composites. The morphology of the nanocomposites was tested by XRD and TEM analyses. The XRD pattern clearly showed that the peaks of the Ni catalysts appeared separately for each catalyst, and the TEM analysis confirmed that the particle sizes of Ni were between 2 nm to 4 nm. The electrochemical analyses were carried out by cyclic voltammetry (CV) to find the catalytic activities of these two types of carbon-supported Ni catalysts.  相似文献   

12.
Cu–Ni nanoparticles (NPs) thin films were prepared by Direct Current (DC) magnetron sputtering with Cu and Ni targets. The products were used as catalysts for Thermal CVD (TCVD) growing of carbon nanotubes (CNTs) from acetylene gas at 825°C. In order to characterize the nano catalysts, X-ray Diffraction (XRD) and Atomic Force Microscopy (AFM) and to study the synthesized CNTs Scanning Electron Microscopy (SEM) and Raman Spectroscopy were applied. A remarkable CNT grown on the sub-surface of catalyst layer compared to its top is deduced from SEM images. Despite the poor catalytic activity of the top-surface, these considerations led us to conclude more catalytic activity of the sub-surface.  相似文献   

13.
本文以氯铂酸氨和氯化镍为原料,氯化铵作为造孔剂,通过雾化干燥法结合煅烧还原制备铂镍合金三维纳米骨架材料,该新型材料可增强催化甲醇氧化性能。重点研究了前驱体中加入氯化铵和不加入对铂镍合金三维纳米骨架形成的影响规律,研究不同结构的铂镍合金三维纳米骨架材料对催化氧化甲醇活性和稳定性的影响规律。研究结果表明,通过加入适量的氯化铵作为造孔剂,制备的铂镍合金为单项固溶体结构(面心立方结构),由弯曲纳米线交织组成三维纳米骨架材料,纳米线直径小于10 nm,纳米孔10 nm左右;与商用Pt黑和不加入氯化铵制备的铂镍合金纳米材料相比,PtNi合金三维纳米骨架材料具有更高的甲醇催化氧化活性(611.4 mA.mg-1Pt),分别是商用Pt黑的3.58倍(170.8 mA.mg-1Pt)和PtNi合金纳米材料(不加氯化铵)的1.36倍(448.8 mA.mg-1Pt);在催化甲醇氧化性能稳定性上,PtNi合金三维纳米骨架材料表现出最好的稳定性,稳定性顺序为:PtNi合金三维纳米骨架材料 > PtNi合金纳米材料(不加氯化铵)> 商用Pt黑。此外,本文对该方法进行了扩展,成功的制备了铂镍钴铜钌铱钯(PtNiCoCuRuIrPd)高熵合金三维纳米骨架材料。  相似文献   

14.
Ni纳米颗粒是甲烷干重整反应(DRM)中的高效催化剂。然而,当应用于实际条件下的DRM反应时,克服由于烧结和积碳引起的催化剂失活,提高催化剂耐久性是其面临的巨大挑战。通过原子层沉积(ALD)技术制备了不连续包覆的FeOx-Ni复合纳米催化结构,显著改善了催化活性,并有效抑制了DRM反应中的碳沉积。通过精确调控Ni纳米颗粒上FeOx包覆层的密度可以实现最佳的催化性能,在650℃下,CH4的转化率由52.21%提高到64.27%。一方面,不连续的包覆结构将Ni表面分隔开,以防止形成碳纳米管钝化催化剂。另一方面,FeOx提供了部分甲烷分解的活性位点,这有利于催化剂活性的提升。同时,FeOx的添加,增强了CO2的吸附和活化,减少了碳中间体的形成。Fe含量为0.1%(质量分数)的FeOx/Ni/Al2O3在650℃反应72 h后活性(CH4转化率)仅降低7%,耐久性良好。  相似文献   

15.
Pencil-like zinc oxide(ZnO) nanowire was synthesized on Si(111) substrate through a simple vapor phase method using a mixture of zinc oxide and graphite as the source material. The source inside a quartz tube created a Zn-rich vapor that facilitated the formation and growth of ZnO nanowires. Field emission scanning electron microscopic studies indicated that pencil-like ZnO nanowires had a size of the range from 50 to 150 nm in diameter and several microns in length. X-ray diffraction was used to investigate the crystal structure of ZnO nanowires. Raman scattering and photoluminescence were applied to characterize the optical properties of the pencils. The growth mechanism of the nanopencils was discussed based on the growth conditions.  相似文献   

16.
This study shows the growth behavior of Co–Ni alloy nanowires in AAO template. Growth of nanowires consists of four different stages namely electronucleation, steady state growth, filling of pores, and coverage of filled nanowires and forming of a film on the template surface. TEM study of nanowires showed that the nanowires possess hemispherical head due to the preferable and more rapid growth phenomenon in central section of nanowires instead of edge sides. Studies on the relations between nanowires composition and ion concentration in solution showed that growth of nanowires is a diffusion-controlled process. The compositional, structural and magnetic properties of nanowires were investigated by means of EDX, TEM and VSM.  相似文献   

17.
采用射频磁控溅射技术在硅衬底上制备Ga2O3/Nb薄膜,然后在900℃下于流动的氨气中进行氨化制备GaN纳米线.用X射线衍射(XRD)、透射电子显微镜(TEM)和高分辨透射电子显微镜详细分析了GaN纳米线的结构和形貌.结果表明:采用此方法得到的GaN纳米线有直的形态和光滑的表面,其纳米线的直径大约50nm,纳米线的长约几个微米.室温下以325nm波长的光激发样品表面,只显示出一个位于367 nm的很强的紫外发光峰.最后,简单讨论了GaN纳米线的生长机制.  相似文献   

18.
The Laves phase morphology in the Fe25Mo14Cr10Ni1Si (wt.%) alloy was modified by Si addition to improve the corrosion resistance of the ferrous alloy to molten zinc. The Si-containing alloy showed a woven, needle-like Laves phase with higher Mo content than that of the Fe25Mo14Cr10Ni alloy. Corrosion resistance to molten Zn for the Si-containing alloy was more than 20 times higher than that of the silicon-free alloy mainly as a result of the characteristics of the modified Laves phase. This phase was oriented perpendicular to the Zn-diffusion direction, which effectively prevented corrosion by the molten Zn, leading to a denser FeZn13 layer rather than the FeZn10 layer produced in the Fe25Mo14Cr10Ni alloy.  相似文献   

19.
采用基于密度泛函理论的第一性原理平面波赝势计算方法,计算了Ni-M(B、Si、Zr和Hf)二元共晶沉淀相(Ni2B、Ni3B、Ni3B2、Ni23B6、Ni3Si、Ni5Zr和Ni5Hf)的相稳定性、弹性常数、硬度及相应的电子结构.相稳定性计算结果表明,二元共晶沉淀相结构稳定性变化趋势由高到低的顺序为Ni3Si、Ni5...  相似文献   

20.
The Solid-Vapor-Liquid-Solid (SVLS) process is a fundamental mechanism for the growth of nanowires. In this article, experimental observations and assessment of thermodynamic data have been used to explain the Solid-Vapor-Liquid-Solid (SVLS) mechanism for the growth of silicon-based nanowires. The binary phase diagram of nanoparticle (Au-Si) systems has been evaluated from information on Gibbs energy of the bulk and surface tension of the liquid phase. At 1100 °C, temperature commonly used for the growth of nanowires by the SVLS mechanism, it has been shown that the nanometric decreases the melting point of pure Au and Si and more generally the liquidus temperatures. Moreover, the liquid phase region in the binary Au-Si phase diagram is enlarged as the particle size becomes smaller. The presence of SiO in the gaseous phase is a necessary but not sufficient condition for the formation of nanowires. The nanowires’growth cannot be explained by the modification of the Au-Si phase diagram with the size of the particles, neither by the presence of SiO, but by the existence of a metastable equilibrium involving the silicon of the wafer, the deposit of vitreous silica and supersaturated SiO in the gaseous phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号