首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two pass butt welding of 6 mm mild steel plates was simulated using 3D finite element model using temperature and phase dependent material properties. Material phase transformations were simulated using suitable phase transformation kinetic models. Mechanical analysis is carried out using nodal temperature and phase proportions as input. Experiments were carried out using liquid nitrogen (LN2) as trailing heat sink. Trailing heat sink helped to reduce the residual stress in the fusion zone (FZ) and heat affected zone (HAZ) although distortions were found be increasing. A parametric study was conducted to study the effect of distance between weld arc and trailing heat sink. The heat sink closer to weld arc reduced both distortions and residual stresses.  相似文献   

2.
Abstract

The effectiveness of welding with a trailing heat sink in reducing the angular distortion of a weld has been experimentally investigated with focus on the cooling position. A numerical model of welding with a trailing heat sink is constructed through the comparison of measured values of weld penetration, thermal cycles and angular distortion with those calculated. On the basis of this model, the effect of welding heat input conditions on the reduction in angular distortion is discussed to evaluate the versatility of welding with a trailing heat sink. The results indicate that the choice of an appropriate cooling position behind the welding heat source is essential for the effective reduction in angular distortion. The reduction in angular distortion by the heat sink at the appropriate cooling position increases with the heat input parameter Qnet/h, where Qnet is the weld heat input and h is the thickness of the plate.  相似文献   

3.
Abstract

A stress and distortion mitigation technique for Gas Tungsten Arc Welding (GTAW) of titanium alloy Ti–6Al–4V thin sheet is presented. The proposed welding technique incorporates a trailing heat sink (an intense cooling source) with respect to the welding torch, and it is also called the Dynamically Controlled Low Stress No-Distortion (DC-LSND) technique. The development of this mitigation technique is based on both detailed welding process simulation using the advanced finite element technique and systematic laboratory experiments. The finite element method is used to investigate the detailed thermomechanical behaviour of the weld during conventional GTAW and DC-LSND GTAW. With detailed computational modelling, it is found that by the introduction of a heat sink at some distance behind the welding arc, a saddle shaped temperature field is formed as a result of the cooling effects of the heat sink; the lowest temperature exists in the zone where the heat sink is applied. High tensile action on the surrounding zone is generated by abrupt cooling and contraction of the metals beneath the heat sink, which increases the tensile plastic strain developed during the cooling process and decreases the compressive plastic strain developed in the heating process, and therefore mitigates the residual stresses and plastic strains within and near the weld. The experimental results confirmed the effectiveness of the DCLSND technique and the validity of the computational model. With a proper implementation of the DC-LSND technique, welding stress and distortion can be reduced or eliminated in welding titanium alloy Ti–6Al–4V thin sheet, while no appreciable detrimental effects are caused on the mechanical properties of welded joints by applying the heat sink in the GTAW process.  相似文献   

4.
采用数值模拟和实验相结合的方法研究了钛合金TC4薄板常规及带热沉的钨极氩弧焊焊接过程中温度及应力应变的分布,考察了热沉对温度场和应力应变场的影响规律,探讨了使用该技术实现应力和变形控制的机理.结果表明:带热沉的钨极氩弧焊焊接过程中,紧随热源之后热沉急冷作用使得试件形成马鞍形温度场,而热沉作用部位温度最低.热沉作用部位的急冷收缩对周围金属产生拉伸作用,使得焊缝及近缝区金属升温过程中产生的压缩塑性应变减小,冷却过程中产生的拉伸塑性应变增大,接头中不协调应变减小,残余应力降低.实验测量与有限元模拟结果吻合良好,证实了采用热沉控制应力与变形的有效性和有限元模型的正确性.  相似文献   

5.
The resistance spot welding of Vitreloy 101 (Cu47Ti34Zr11Ni8) metallic glass ribbons was studied by mechanical testing, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Material was expelled along the weld interface and around the electrode contact points on the alloy surface. There were no significant changes in composition between the melted and native alloy although minor (∼8%) crystallization was observed in DSC data. Failure during peel and tensile-shear tests of the welds was observed to occur at the periphery of the weld (pullout failure), where slower melting and cooling occurred away from the heat sink effects of the welding electrodes. Measurements of lap welds indicated a maximum shear strength of 810 ± 77 MPa, about 75% of the predicted shear strength of the monolithic alloy. Embrittlement and crystallization around the weld likely contributed to failure. A finite element analysis (FEA) model was developed to explore the temperature–time relation inside the metallic glass during and following welding and it confirmed the main features observed experimentally. The model indicated rapid melting as temperatures reached ∼2000 K followed by cooling of the center of the weld nugget at rates up to ∼48,000 K s−1, greatly exceeding the critical cooling rate for this material of 250 K s−1. A torus of material around the weld nugget remained molten for longer and cooled more slowly than the center of the weld nugget.  相似文献   

6.
热沉影响钛合金薄板焊接残余应力的试验分析   总被引:2,自引:0,他引:2       下载免费PDF全文
采用切条应力释放法测量了钛合金TC4薄板常规钨极氩弧焊(GTAW)和动态控制低应力无变形GTAW对接试件中的纵向残余应力和纵向残余塑性应变的分布。测量结果表明,钛合金常规GTAW缝中残余拉应力峰值小于其母材屈服强度,焊缝附近存在残余压缩塑性应变;动态控制低应力无变形GTAW焊技术中热沉的冷却作用使得热源与热沉之间的高温金属承受强烈的拉伸作用,产生拉伸塑性变形,部分抵消了焊接过程中已产生的缩短的塑性变形,使得试件中纵向残余塑性应变减小,焊接残余拉应力峰值降低,残余压应力水平降低。切条应力释放法是一种简便有效的薄板焊后残余应力测量方法,能够满足工程应用的精度要求。  相似文献   

7.
为了揭示0.5 mm厚度Hastelloy C-276薄板脉冲激光拘束焊接的热力学行为,借助ANSYS软件建立了三维有限元模型。实验测量了焊接温度历程和残余变形,验证了所建立有限元模型的可靠性。基于该有限元模型,采用改变夹具拘束条件的方法,进一步研究了拘束距离对Hastelloy C-276薄板焊接瞬态应力和塑性应变、残余应力及变形的影响规律。结果表明,温度历程和残余变形的模拟结果与实验结果吻合较好;拘束距离对瞬态塑性应变的大小有显著影响,进而改变了残余应力及变形的分布和大小。随着夹具拘束距离从20 mm减小到4 mm,除了纵向残余拉伸应力外,横向残余拉伸应力和位移的峰值以及角变形的大小都呈减小的趋势。相对较小的拘束距离可以作为抑制横向残余拉伸应力和角变形的高效低成本方法,但对纵向残余拉伸应力有不利影响。  相似文献   

8.
Abstract

This paper investigates a trailing heat sink, which was designed and applied to friction stir welding (FSW) in order to control the residual stresses and welding distortion. Residual stresses, residual plastic strains and welding distortion of 2024-T3 and 5083-H321 Al sheets welded by FSW with and without the trailing heat sink were compared. The optimal placement of the heat sink was discussed. The results revealed that the reductions in peak tensile stresses were 66% for 2024-T3 and 58% for 5083-H321 by application of the trailing heat sink in FSW. In addition, the welding distortion could be reduced drastically by this method. The 5083-H321 sheet with a size of 1000×100×3·5 mm welded by this method was very flat and had almost no distortion. This method achieved in-process control of stresses and welding distortion, without additional complicated work before or after welding operation.  相似文献   

9.
预拉伸对铝合金焊接残余应力和变形的影响   总被引:1,自引:2,他引:1  
在预拉伸应力作用下,进行了厚度为4mm的5A05铝合金试板的焊接,焊后残余应力及变形的测定结果表明.预拉伸焊接法可有效减小铝合金薄板焊后的纵向残余应力、纵向挠曲变形和平面变形。在弹性应力范由内,随着预应力的增大,试板的残余应力峰值、纵向挠曲变形及平面变形均逐渐减小。分析认为,预拉伸应力部分抵消了焊接区热膨胀产生的压缩应力,从而减小了压缩塑性变形,进而减小了冷却时焊接区域的拉伸应力水平,相应地远离焊缝区域的压缩应力也随之减小。  相似文献   

10.
Abstract

Flash-butt welding is used in the manufacture of continuously-welded rails. Finished welds typically exhibit high tensile residual stresses in the rail web and at the upper surface of the rail foot, which may increase the risk of fatigue failure in service. An understanding of the influence of the welding process, including post-weld cooling, on the residual stress distribution is necessary to improve the performance of flash-butt welds by post-weld heat treatment (PWHT), since incorrect treatment may have adverse effects on both residual stress and weld material characteristics. A finite element model has been developed to simulate post-weld cooling in flash-butt welded AS60 kg m–1 rail. Computed thermal histories for normal (air) cooling, rapid PWHT, and accelerated cooling (water spray) were used as inputs to calculate sequentially coupled stress–time histories, including phase transformations. In addition, the localised influence of the initiation time for rapid PWHT, after final upset, on the reduction of tensile residual stresses was investigated. Heating the rail foot immediately after final upset reduced tensile residual stresses in the web region of the weld. Preliminary numerical predictions showed that water quenching the entire weld region too soon after the austenite–pearlite transformation is completed can induce further tensile residual stresses without affecting the microstructure. The results of the numerical analysis can be used to modify the flash-butt welding procedure to lower residual stress levels, and hence improve weld performance.  相似文献   

11.
Investment casting molds with different numbers of shells and pre-heating temperatures were investigated in this study. The primary layer consists of colloidal silica bound ZrSiO4 with additions of CoAl2O4 to achieve fine grains and to reach a good surface quality, whereas the following layers consist of mullite bound by colloidal silica. Interface temperatures (alloy/mold) that are necessary to determine heat transfer coefficients were obtained by linear extrapolation. Heat transfer coefficients in the range of 300-660 W/(m2 K) were obtained. The castings were examined with regard to grain size and secondary dendrite arm spacing. Physical properties of the investment casting mold were examined by differential scanning calorimetry (DSC) and Laserflash methods for temperatures up to 1300 °C. The specific heat capacity was determined to 1.13 J/(g K), thermal diffusivity was found to be in the range of (4-5) × 10−7 m2/s and the thermal conductivity to be 1 ± 0.1 W/(m K).  相似文献   

12.
温差拉伸和随焊激冷配合使用控制焊接变形   总被引:7,自引:0,他引:7       下载免费PDF全文
对温差拉伸和随焊激冷配合使用控制铝合金薄板焊接变形的联合工艺进行了数值模拟和试验研究。数值分析表明 ,随焊激冷更倾向于在焊缝中心造成显著的纵向塑性拉伸 ,而温差拉伸则倾向于在近缝区造成显著的塑性拉伸。将二者配合使用 ,不仅可以靠温差拉伸将焊缝和近缝区在加热阶段形成的纵向塑性压应变控制在较低的水平 ,还可以靠随焊激冷增加冷却阶段的纵向塑性拉伸进一步抵消焊缝区已经形成的压应变。因而充分发挥二者的作用 ,有效地控制焊件的残余变形。试验研究与数值模拟得到的结论基本一致 ,随焊激冷和温差拉伸联合使用 ,可使 5 4 0mm× 3 0 0mm× 2mm的LY1 2CZ薄板焊后纵向挠曲由单独使用温差拉伸时的 2 .87mm和单独使用随焊激冷时的 4 .88mm降低到 0 .80mm的水平  相似文献   

13.
Residual strains of resistance spot welded joints of 6061-T6 aluminum alloy sheets were measured in three different directions denoted as in-plane longitudinal (σ11), in-plane transversal (σ22), and normal (σ33). The welding process parameters were established to meet or exceed MIL-W-6858D specifications (i.e., approximately 5.7 mm weld nugget and minimum shearing force of 3.8 kN per weld confirmed via quasi-static tensile testing). Electron backscatter diffraction (EBSD) and optical microscopy (OM) were performed to determine grain size and orientation. The residual stress measurements were taken at a series of points along the weld centerline at depths corresponding to the weld mid-plane and at both 1 mm below the top surface of the plate and 1 mm above bottom surface. The residual stresses were captured on the fusion zone (FZ), heat affected zone (HAZ) and base metal (BM) of the resistance spot welded joint. Neutron diffraction results show residual stresses in the weld are approximately 40% lower than yield strength of the parent material. The maximum variation in residual stresses occurs, as expected, in the vertical position of the specimen because of the orientation of electrode clamping forces that produce a non-uniform solidification pattern. Despite the high anisotropy of the welding nugget and surrounding area, a significant result is that σ33 measured stress values are negligible in both the horizontal and vertical directions of the specimen. Consequently, microstructure–property relationships characterized here can indeed inform continuum material models for application in multiscale models.  相似文献   

14.
A three-dimensional elastic–plastic finite element model was used to investigate the relative effects of different joint forms on the welding distortion and residual stresses in an automotive differential assembly due to deep-penetration high-energy welding. Numerical studies were carried out to determine optimal selections of heat generation rate and the number of weld segments to ensure both computational efficiency and accuracy of the calculation. To model the constraints and boundary conditions realistically, contact elements were used at the mating surfaces of different structural components and the shrink fit between the gear and differential case was modeled using couple sets. Two situations representing welded gear-case assemblies where the weld joints were oriented at 0° and 30° with respect to the radial direction were analyzed. Predicted welding distortions and residual stresses are compared and discussed in detail. The results indicate that the residual tensile stresses in the 0° radial joint are larger than those in the 30° angled joint and that residual distortion is sensitive to joint form.  相似文献   

15.
采用热-弹塑性三维有限元法研究激光熔透焊接Ti6Al4V合金的残余应力,并采用小孔法测量焊接残余应力以和计算结果进行比较.有限元计算时,建立了以焊缝形貌尺寸为参数的统一锥形热源模型来模拟不同热输入时的焊接温度场,并讨论了边界条件和有限元网格大小的确定.研究结果表明:采用焊缝轮廓尺寸作为热源参数能准确模拟焊缝横截面轮廓;钛合金激光熔透焊接的纵向残余应力分布梯度陡;在焊件表面和内部残余应力分布趋势不同,采用小孔法测量的残余应力分布和计算的焊接件内部残余应力分布相似.  相似文献   

16.
采用虚拟仪器和NI数据采集卡搭建了一种以小孔法为核心的残余应力测试系统,分析了7A52铝合金VPPA-MIG复合焊后残余应力的分布情况. 为降低弹性模量误差对最终测量结果的影响,通过实测复合焊接接头不同区域的弹性模量,拟合弹性模量随测量点位置变化的曲线来修正弹性模量误差. 针对10 mm厚7A52铝合金板材,完成了VPPA-MIG复合焊接残余应力测试试验. 结果表明,焊缝两侧各区域上的残余应力分布基本关于焊缝对称,熔合区出现最大拉应力,最大横向残余应力σy与纵向残余应力σx分别为118和223 MPa. 从熔合区至热影响区,残余应力均为拉应力,逐渐减小且高于焊缝中心的残余应力. 与单MIG焊相比,复合焊的最大横向残余应力与纵向残余应力大于MIG焊,但高应力区比MIG焊窄.  相似文献   

17.
利用三维有限元分析软件,模拟了BT20钛合金薄板焊态和焊后电子束局部热处理的实际焊接温度场以及残余应力的分布。结合数值计算,讨论了不同的热处理方式以及热处理工艺参数对焊接接头残余应力分布的影响。结果表明,在钛合金薄板焊缝的背面进行电子束局部热处理,可以显著降低焊缝中心处的残余拉应力。数值计算结果还表明,在其它工艺参数相同的情况下,随着局部热处理加热宽度和加热时间的增加,焊缝及近缝区的纵向残余应力随之降低,同时产生残余应力的范围也随之增大。  相似文献   

18.
In order to control welding stress and distortion, a new welding with trailing peening method based on the electromagnetic hammer was developed. This method uses the idea of constant frequency pulse width modulation for designing the control circuit of peening force and peening frequency. The peening force can be adjusted between 0 and 1 000 N and the peening frequency ranges from 0 to 25 Hz. Peening force is applied to the weld metal and the weld toe during the welding by peening head. The experiments show that the method is portable and flexible, and it can adjust the distribution state of welding residual stress, making grain refinement. When the peening force is changed to 700 N and the peening frequency to 3 Hz, both the transverse and longitudinal residual stresses will drop obviously.  相似文献   

19.
对搅拌摩擦焊过程中搅拌头速度变化进行分析,建立了考虑搅拌摩擦焊过程中焊缝产热的热源模型.对2024铝合金搅拌摩擦焊温度场和应力场进行了三维有限元模拟,表明焊缝两侧温度和应力分布的不对称现象不明显,主要由于焊接速度远小于搅拌头转速所致,但随着焊接速度加快,这种不对称现象逐渐加强.焊接过程中焊缝中心温度低于搅拌头边缘温度,焊接前方和两侧均为压应力,后方为拉应力;焊接结束后与搅拌头接触区的横向和纵向残余应力为较大拉应力,远离焊缝残余应力较小;沿厚度方向上,横向和纵向残余应力均逐渐降低.有限元计算结果与短波长X射线应力测试结果进行对比,结果表明,二者趋势基本吻合.  相似文献   

20.
A 3D thermo-mechanical simulation model was developed to predict distributions of temperature and residual stresses during the gas tungsten arc welding (GTAW) process with a heat sink for Monel 400 plates using finite element method. The model was validated against the experimental measurements of both temperature and released strain in the welded plates. Effects of heat input, pipe diameter and water flow rate in the heat sink welding process were investigated. The results showed that in the GTAW process with a heat sink, the high temperature region was only limited to the vicinity of heat source and the maximum temperature of the sample was much lower than that of conventional GTAW process. This resulted in a lower residual stresses and even compressive stresses near the weld zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号