首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Mo5Si3 shows promise as a high-temperature creep-resistant material. The high-temperature oxidation resistance of Mo5Si3 has been found to be poor, however, limiting its use in oxidizing atmospheres. Undoped Mo5Si3 exhibits pest oxidation at 800°C. Mass loss occurs in the temperature range 900°–1200°C due to volatilization of molybdenum oxide, indicating that the silica scale that forms does not provide a passivating layer. The addition of boron results in protective scale formation and parabolic oxidation kinetics in the temperature range of 1050°–1300°C. The oxidation rate of Mo5Si3 was decreased by 5 orders of magnitude at 1200°C by doping with less than 2 wt% boron. Boron doping eliminates catastrophic pest oxidation at 800°C. The mechanism for improved oxidation resistance of borondoped Mo5Si3 is viscous sintering of the scale to close pores that form during the initial transient oxidation period, due to volatilization of molybdenum oxide.  相似文献   

2.
The oxidation process of MoSi2 is very complex, and controversial results have been reported, especially for the early-stage oxidation before the formation of passive SiO2 film. Most oxidation studies have been carried out on bulk consolidated samples, and the early stage of oxidation has not been studied. In this investigation, very fine MoSi2 powder with an average particle size of 1.6 μm was used. Such a fine particle size makes it easier to study the early stages of oxidation since a significant portion of the powder is oxidized before the formation of passive SiO2 film. The oxidation kinetics of commercial MoSi2-SiC and MoSi2-Si3N4 powder mixtures were also studied for comparison. Weight changes were measured at discrete time intervals at 500° to 1100°C in 0.14 atm of oxygen. X-ray diffraction was used to identify the phases formed during oxidation. Our results show the formation of MoO3 phase and an associated weight gain at low temperatures (500° and 600°C). At temperatures higher than 900°C, Mo5Si3 phase formed first and was subsequently oxidized to solid SiO2 and volatile MoO3, resulting in an initial weight gain followed by subsequent weight loss. A model based on the assumption that oxidation kinetics of both MoSi2 and Mo5Si3 are proportional to their fractions in the system describes the experimental data well.  相似文献   

3.
Dense SiC/MoSi2 nanocomposites were fabricated by reactive hot pressing the mixed powders of Mo, Si, and nano-SiC particles coated homogeneously on the surface of Si powder by polymer processing. Phase composition and microstructure were determined by methods of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy-dispersive spectrometry. The nanocomposites obtained consisted of MoSi2, β-SiC, less Mo5Si3, and SiO2. A uniform dispersion of nano-SiC particles was obtained in the MoSi2 matrix. The relative densities of the monolithic material and nanocomposite were above 98%. The room-temperature flexural strength of 15 vol% SiC/MoSi2 nanocomposite was 610 MPa, which increased 141% compared with that of the monolithic MoSi2. The fracture toughness of the nanocomposite exceeded that of pure MoSi2, and the 1200°C yield strength measured for the nanocomposite reached 720 MPa.  相似文献   

4.
A method to simultaneously synthesize and consolidate MoSi2 from powders of Mo and Si was investigated. Combustion synthesis was carried out under the combined effect of an electric field and mechanical pressure. Highly dense molybdenum silicide up to (99.2%) was produced from elemental powders in one step. Minor amounts of Mo5Si3 were present at the boundaries of MoSi2 grains in the interior of samples made from stoichiometric reactants. The addition of 2.5 mol% Si excess, however, resulted in Mo5Si3-free, dense MoSi2 products.  相似文献   

5.
The oxidation kinetics of hot-pressed Mo(Al0.01Si0.99)2 and Mo(Al0.1Si0.9)2 were measured at 480°C, and between 1200° and 1600°C. The qualitative oxidation of arc-melted Mo(Al0.1Si0.9)2, Mo(Al0.3Si0.7)2, Mo(Al0.5Si0.5)2, and Mo3Al8 was examined after 600°C for 1000 h in air. At all temperatures, the compositional difference between the materials yielded very different oxidation rates and scale microstructures. At 1400° and 1500°C, microstructural evolution of the oxide scales resulted in improved oxidation resistance at long times (>400 h). At these temperatures, a significant reduction in the long-time oxidation kinetics was correlated with the in situ formation of an inner mullite scale. At 480° and 600°C, oxidation resistance improved significantly with increasing aluminum concentration. Contrary to the behavior of MoSi2, samples of Mo(Al0.01Si0.99)2 did not demonstrate catastrophic oxidation, and samples of Mo(Al0.1Si0.9)2 were very oxidation resistant.  相似文献   

6.
The tribological behavior of Mo5Si3-particle-reinforced silicon nitride (Si3N4) composites was investigated by pin-on-plate wear testing under dry conditions. The friction coefficient of the Mo5Si3–Si3N4 composites and Si3N4 essentially decreased slowly with the sliding distance, but showed sudden increase for several times during the wear testing. The average friction coefficient of the Si3N4 decreased with the incorporation of submicrometer-sized Mo5Si3 particles and also as the content of Mo5Si3 particles increased. When the Mo5Si3–Si3N4 composites were oxidized at 700°C in air, solid-lubricant MoO3 particles were generated on the surface layer. Oxidized Mo5Si3–Si3N4 composites showed self-lubricating behavior, and the average friction coefficient and wear rate of the oxidized 2.8 wt% Mo5Si3–Si3N4 composite were 0.43 and 0.72 × 10−5 mm3 (N·m)−1, respectively. Both values were ∼30% lower than those for the Si3N4 tested in an identical manner.  相似文献   

7.
The oxidation of MoSi2 in air at atmospheric pressure was studied by electron diffraction, X-ray diffraction, and thermogravimetric analyses. The oxidation process occurs in two parts: (1) formation of MoO3 and SiO2 at temperatures below the boiling point of MoO3, and (2) formation of Mo5Si3 and SiO2 at higher temperatures. Evidence is presented which indicates that oxygen permeation through a silica layer, which may be of a mixed crystalline-glassy nature, controls reaction rate at high temperatures and that Mo5Si3 is present directly beneath the protective oxide. The activation energy for oxidation of MoSi2 above 1200°C was calculated as 81.3 kcal mole−1.  相似文献   

8.
The presence of Mo5Si3 in MoSi2 preforms hinders the reactive infiltration of aluminum. To understand the role of Mo5Si3, the kinetics of aluminum infiltration into pure Mo5Si3 is studied. Irrespective of the initial composition (MoSi2 or Mo5Si3) of the preform, the final product always contains Mo(Al,Si)2. However, the aluminum content in the two cases is different: when the preform is MoSi2, the aluminum content is 14–18 at.%, and, when the preform is Mo5Si3, the aluminum content is 25–27 at.%. The activation energy for the reactive infiltration of aluminum into the Mo5Si3 preform is ∼26 kJ/mol.  相似文献   

9.
Induction plasma spraying was used to produce freestanding parts of Mo5Si3-boron (Mo5Si3-B) composite materials. Four different Mo5Si3-B compositions were prepared and oxidized isothermally at 1210°C in air at atmospheric pressure. The high-temperature oxidation performance of these materials was dependent strongly on the boron content in the specimens. The composite that contained 2.0 wt% boron exhibited excellent resistance to oxidation, as indicated by the almost-zero change in specimen mass after oxidation for 24 h.  相似文献   

10.
Si3N4/MoSi2 and Si3N4/WSi2 composites were prepared by reaction-bonding processes using as starting materials powder mixtures of Si-Mo and Si-W, respectively. A presintering step in an At-base atmosphere was used before nitriding for the formation of MoSi2 and WSi2; the nitridation in a N2-base atmosphere was followed after presintering with the total stepwise cycle of 1350°C × 20 h +1400°C × 20 h +1450°C × 2 h. The final phases obtained in the two different composites were Si3N4 and MoSi2 or WSi2; no free elemental Si and Mo or W were detected by X-ray diffraction.  相似文献   

11.
MoSi2-particulate-reinforced α-SiAlON ceramic composites containing 10, 20, 25, and 30 vol% were prepared by hot pressing at 1750°-1800°C. The α-SiAlON matrix was of the composition (Y0.48Si10.00A12.30O1.17N15.29). The hardness for the fully dense samples changed from HV10 = 22.5 to 15.3 GPa and the toughness from 3.2 to around 5.2 MPa.m1/2 when up to 30 vol% MoSi2 was present. Two interesting microstructural features have been found. First, with an increasing amount of MoSi2 a pronounced coalescence of MoSi2 particles formed a "dual phase" material. The second effect was the growth of elongated α-SiAlON grains in the matrix with 10 vol% MoSi2 added. The oxidation resistance has been determined to be unaffected by the addition of 2hd vol % MoSi2 at 1250°C in oxygen gas of l atm pressure.  相似文献   

12.
Equilibrium relationships in the system Al2O3-Ce2Si2O7 in inert atmosphere have been investigated in the temperature range 900° to 1925°C. A simple eutectic reaction was found at 1375°C and 51 mol% Ce2Si2O7. A high-low polymorphic transformation in Ce2Si2O7 was observed at 1274°C. New XRD patterns are suggested for both polymorphs of cerium pyrosilicate. The melting point of Ce2Si2O7 was found to be 1788°C. A value for ΔH°m,Ce2Si2O7 of 36.81 kJ/mol was calculated from the initial slope of the experimentally determined liquidus in equilibrium with the pyrosilicate phase.  相似文献   

13.
Processing Temperature Effects on Molybdenum Disilicide   总被引:1,自引:0,他引:1  
A series of MoSi2 compacts were fabricated at increasing hot-pressing temperatures to achieve different grain sizes. The materials were evaluated by Vickers indentation fracture to determine room-temperature fracture toughness, hardness, and fracture mode. From 1500° to 1800°C, MoSi2 had a constant 67% transgranular fracture and linearly increasing grain size from 14 to 21 μm. Above 1800°C, the fracture percentage increased rapidly to 97% transgranular at 1920°C (32-μm grain size). Fracture toughness and hardness decreased slightly with increasing temperature. MoSi2 processed at 1600°C had the highest fracture toughness and hardness values of 3.6 MPa.m1/2 and 9.9 GPa, respectively. The effects of SiO2 formation from oxygen impurities in the MoSi2 starting powders and MoSi2–Mo5Si3 eutectic liquid formation were studied.  相似文献   

14.
Subsolidus phase relations were established in the system Si3N4-SiO2-Y2O3. Four ternary compounds were confirmed, with compositions of Y4Si2O7N2, Y2Si3O3N4, YSiO2N, and Y10(SiO4)6N2. The eutectic in the triangle Si3N4-Y2Si2O7-Y10(SiO4)6N2 melts at 1500°C and that in the triangle Si2N2O-SiO2-Y2Si2O7 at 1550°C. The eutectic temperature of the Si3N4-Y2Si2O7 join was ∼ 1520°C.  相似文献   

15.
Details of the fabrication and microstructures of hot-pressed MoSi2 reinforced–Si3N4 matrix composites were investigated as a function of MoSi2 phase size and volume fraction, and amount of MgO densification aid. No reactions were observed between MoSi2 and Si3N4 at the fabrication temperature of 1750°C. Composite microstructures varied from particle–matrix to cermet morphologies with increasing MoSi2 phase content. The MgO densification aid was present only in the Si3N4 phase. An amorphous glassy phase was observed at the MoSi2–Si3N4 phase boundaries, the extent of which decreased with decreased MgO level. No general microcracking was observed in the MoSi2–Si3N4 composites, despite the presence of a substantial thermal expansion mismatch between the MoSi2 and Si3N4 phases. The critical MoSi2 particle diameter for microcracking was calculated to be 3 μm. MoSi2 particles as large as 20 μm resulted in no composite microcracking; this indicated that significant stress relief occurred in these composites, probably because of plastic deformation of the MoSi2 phase.  相似文献   

16.
The effect of Si3N4, Ta5Si3, and TaSi2 additions on the oxidation behavior of ZrB2 was characterized at 1200°–1500°C and compared with both ZrB2 and ZrB2/SiC. Significantly improved oxidation resistance of all Si-containing compositions relative to ZrB2 was a result of the formation of a protective layer of borosilicate glass during exposure to the oxidizing environment. Oxidation resistance of the Si3N4-modified ceramics increased with increasing Si3N4 content and was further improved by the addition of Cr and Ta diborides. Chromium and tantalum oxides induced phase separation in the borosilicate glass, which lead to an increase in liquidus temperature and viscosity and to a decrease in oxygen diffusivity and of boria evaporation from the glass. All tantalum silicide-containing compositions demonstrated phase separation in the borosilicate glass and higher oxidation resistance than pure ZrB2, with the effect increasing with temperature. The most oxidation-resistant ceramics contained 15 vol% Ta5Si3, 30 vol% TaSi2, 35 vol% Si3N4, or 20 vol% Si3N4 with 10 mol% CrB2. These materials exceeded the oxidation resistance of the ZrB2/SiC ceramics below 1300°–1400°C. However, the ZrB2/SiC ceramics showed slightly superior oxidation resistance at 1500°C.  相似文献   

17.
An intimate Ba-Al-Al2O3-SiO2 powder mixture, produced by high-energy milling, was pressed to 3 mm thick cylinders (10 mm diameter) and hexagonal plates (6 mm edge-to-edge width). Heat treatments conducted from 300° to 1650°C in pure oxygen or air were used to transform these solid-metal/oxide precursors into BaAl2Si2O8. Barium oxidation was completed, and a binary silicate compound, Ba2SiO4, had formed within 24 h at 300°C. After 72 h at 650°C, aluminum oxidation was completed, and an appreciable amount of BaAl2O4 had formed. Diffraction peaks consistent with hexagonal BaAl2Si2O8, BaAl2O4, β-BaSiO3, and possibly β-BaSi2O5 were detected after 24 h at 900°C. Diffraction peaks for BaAl2O4 and BaAl2Si2O8 were observed after 35 h at 1200°C, although SEM analyses also revealed fine silicate particles. Further reaction of this silicate with BaAl2O4 at 1350° to 1650°C yielded a mixture of hexagonal and monoclinic BaAl2Si2O8. The observed reaction path was compared to prior work with other inorganic precursors to BaAl2Si2O8.  相似文献   

18.
Molybdenum carbosilicide composites (SiC-Mo≤5Si3C≤1) were fabricated via the melt-infiltration process. The fracture behavior of the composites was studied from room temperature up to 1800°C in 1 atm (∼105 Pa) of argon. The bend strength of the composites slightly increased at ∼1200°C, because of the brittle-ductile transition of the intermetallic phase. The composites retained ∼90% of their room-temperature strength, even at 1700°C. Compressive creep tests were performed over a temperature range of 1760°-1850°C and a stress range of 200–250 MPa. The creep rate of the SiC-Mo≤5Si3C≤1 composites was approximately an order of magnitude higher than that of reaction-bonded SiC.  相似文献   

19.
The microstructure of two pressureless-sintered ultra-high-temperature ceramics, namely ZrC+20 vol% MoSi2 and HfC+20 vol% MoSi2, was characterized by scanning and transmission electron microscopy. With regard to the ZrC–MoSi2 system, Zr x Si y compounds and SiC were detected. In the HfC–MoSi2 system, a mixed phase was detected at the triple points and identified as (Mo,Hf)5Si3. For both the systems investigated, the high wettability of the silicide-based phases on the matrix grains suggests that sintering is assisted by a liquid phase. This contribution reports for the first time on the sintering mechanisms of early transition metal carbides doped with MoSi2 as a sinter additive, on the basis of the microstructural evolution observed upon sintering and in the light of phase diagrams and thermodynamical calculations.  相似文献   

20.
The 1780°C isothermal section of the reciprocal quasiternary system Si3N4-SiO2-BeO-Be3N2 was investigated by the X-ray analysis of hot-pressed samples. The equilibrium relations shown involve previously known compounds and 8 newly found compounds: Be6Si3N8, Be11Si5N14, Be5Si2N6, Be9Si3N10, Be8SiO4N4, Be6O3N2, Be8O5N2, and Be9O6N2. Large solid solubility occurs in β-Si3N4, BeSiN2, Be9Si3N10, Be4SiN4, and β-Be3N2. Solid solubility in β-Si3N4 extends toward Be2SiO4 and decreases with increasing temperature from 19 mol% at 1770°C to 11.5 mol% Be2SiO4 at 1880°C. A 4-phase isotherm, liquid +β-Si3N4 ( ss )Si2ON2+ BeO, exists at 1770°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号