首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A symmetry position/force hybrid control framework for cooperative object transportation tasks with multiple humanoid robots is proposed in this paper. In a leader-follower type cooperation, follower robots plan their biped gaits based on the forces generated at their hands after a leader robot moves. Therefore, if the leader robot moves fast (rapidly pulls or pushes the carried object), some of the follower humanoid robots may lose their balance and fall down. The symmetry type cooperation discussed in this paper solves this problem because it enables all humanoid robots to move synchronously. The proposed framework is verified by dynamic simulations.  相似文献   

2.
Implementing tele-assistance or supervisory control for autonomous subsea robots requires atomic actions that can be called from high level task planners or mission managers. This paper reports on the design and implementation of a particular atomic action for the case of a subsea robot carrying out tasks in contact with the surrounding environment.Subsea vehicles equipped with manipulators can have upward of 11 degrees of freedom (DOF), with degenerate and redundant inverse kinematics. Distributed local motion planning is presented as a means to specify the motion of each robot DOF given a goal point or trajectory. Results are presented to show the effectiveness of the distributed versus non-distributed approach, a means to deal with local minima difficulties, and the performance for trajectory following with and without saturated joint angles on a robot arm.Consideration is also given to the modelling of hydraulic underwater robots and to the resulting design of hybrid position/force control strategies. A model for a hydraulically actuated robot is developed, taking into account the electrohydraulic servovalve, the bulk modulus of oil, piston area, friction, hose compliance and other arm parameters. Open and closed-loop control results are reported for simulated and real systems.Finally, the use of distributed motion planning and sequential position/force control of a Slingsby TA-9 hydraulic underwater manipulator is described, to implement an atomic action for tele-assistance. The specific task of automatically positioning and inserting a Tronic subsea mateable connector is illustrated, with results showing the contact conditions during insertion.  相似文献   

3.
This paper discusses cooperative control of a dual-flexible-arm robot to handle a rigid object in three-dimensional space. The proposed control scheme integrates hybrid position/force control and vibration suppression control. To derive the control scheme, kinematics and dynamics of the robot when it forms a closed kinematic chain is discussed. Kinematics is described using workspace force, velocity and position vectors, and hybrid position/force control is extended from that on dual-rigid-arm robots. Dynamics is derived from constraint conditions and the lumped-mass-spring model of the flexible robots and an object. The vibration suppression control is calculated from the deflections of the flexible links and the dynamics. Experiments on cooperative control are performed. The absolute positions/orientations and internal forces/moments are controlled using the robot, each arm of which has two flexible links, seven joints and a force/torque sensor. The results illustrate that the robot handled the rigid object damping links' vibration successfully in three-dimensional space.  相似文献   

4.
Neural Network Force Control for Industrial Robots   总被引:1,自引:0,他引:1  
In this paper, we present a hierarchical force control framework consisting of a high level control system based on neural network and the existing motion control system of a manipulator in the low level. Inputs of the neural network are the contact force error and estimated stiffness of the contacted environment. The output of the neural network is the position command for the position controller of industrial robots. A MITSUBISHI MELFA RV-M1 industrial robot equipped with a BL Force/Torque sensor is utilized for implementing the hierarchical neural network force control system. Successful experiments for various contact motions are carried out. Additionally, the proposed neural network force controller together with the master/slave control method are used in dual-industrial robot systems. Successful experiments are carried out for the dual-robot system handling an object.  相似文献   

5.
In this paper the problem of regulating force and position for a robot manipulator in contact with an elastically compliant environment is considered. In the framework of parallel force/position control, an output feedback regulator with gravity compensation and desired force feedforward is proposed which only requires measurements of force and position. Semiglobal stability of the closed-loop system around the equilibrium is shown via a Lyapunov argument.  相似文献   

6.
在机器人力/位置混合控制的基础上,本文提出了一种对力控制回路采用自适应模糊控制的方法,有利于提高系统对机器人末端操纵器五外界工作环境接触时,其接触刚度不确定性的自适应能力,仿真结果表明,该控制方法与常规PID控制相比,系统的自适应能力和鲁棒性有显著的改善。  相似文献   

7.
This paper proposes the novel adaptive neural network (ADNN) compliant force/position control algorithm applied to a highly nonlinear serial pneumatic artificial muscle (PAM) robot as to improve its compliant force/position output performance. Based on the new adaptive neural ADNN model which is dynamically identified to adapt well all nonlinear features of the 2-axes serial PAM robot, a new hybrid adaptive neural ADNN-PID controller was initiatively implemented for compliant force/position controlling the serial PAM robot system used as an elbow and wrist rehabilitation robot which is subjected to not only the internal coupled-effects interactions but also the external end-effecter contact force variations (from 10[N] up to critical value 30[N]). The experiment results have proved the feasibility of the new control approach compared with the optimal PID control approach. The novel proposed hybrid adaptive neural ADNN-PID compliant force/position controller successfully guides the upper limb of subject to follow the linear and circular trajectories under different variable end-effecter contact force levels.  相似文献   

8.
Balancing control of humanoid robots is of great importance since it is a necessary functionality not only for maintaining a certain position without falling, but also for walking and running. For position controlled robots, the for-ce/torque sensors at each foot are utilized to measure the contact forces and moments, and these values are used to compute the joint angles to be commanded for balancing. The proposed approach in this paper is to maintain balance of torque-controlled robots by controlling contact force and moment using whole-body control framework with hierarchical structure. The control of contact force and moment is achieved by exploiting the full dynamics of the robot and the null-space motion in this control framework. This control approach enables compliant balancing behavior. In addition, in the case of double support phase, required contact force and moment are controlled using the redundancy in the contact force and moment space. These algorithms are implemented on a humanoid legged robot and the experimental results demonstrate the effectiveness of them.  相似文献   

9.
In several robotics applications, the robot must interact with the workspace, and thus its motion is constrained by the task. In this case, pure position control will be ineffective since forces appearing during the contacts must also be controlled. However, simultaneous position and force control called hybrid control is then required. Moreover, the nonlinear plant dynamics, the complexity of the dynamic parameters determination and computation constraints makes more difficult the synthesis of control laws. In order to satisfy all these constraints, an effective hybrid force/position approach based on artificial neural networks for multi-inputs/multi-outputs systems is proposed. This approach realizes, simultaneously, an identification and control of systems, and it is implemented according to two phases: At first, a neural observer is trained off-line on the basis of the data acquired during contact motion, in order to realize a smooth transition from free to contact motion. Then, an online learning of the neural controller is implemented using neural observer parameters so that the closed-loop system maintains a good performance and compensates for uncertain/unknown dynamics of the robot and the environment. A typical example on which we shall focus is an assembly task. Experimental results on a C5 links parallel robot demonstrate that the robot's skill improves effectively and the force control performances are satisfactory, even if the dynamics of the robot and the environment change.  相似文献   

10.
A theoretical approach to force control design for industrial robots involved in surface-following tasks is described in this paper, assuming an infinitely stiff environment. Independent Joint Control techniques, based on standard (PID) algorithms, are adopted for position control. Force control acts as an outer loop, by adding a bias to the position set points in the joint space. A simple model and compensation of the joint flexibility effects, that play an important role in determining the dynamic behavior of the system, are also presented, leading to a force control decoupled from motion control. Some experimental results are discussed, with reference to the industrial robot SMART.  相似文献   

11.
工业机械臂在诸如打磨抛光等接触式作业任务中对环境刚度信息存在一定的依赖性, 未知环境刚度信息将严重影响机器人的力位控制精度, 使得作业效果难以得到保证. 为解决环境信息不足或未知情况下的力/位置精确控制问题, 本文首先提出了一种新的自适应环境刚度在线估计方法, 针对时变的环境刚度进行实时估计, 由此预测生成后继的机械臂参考轨迹点, 随后提出了一种根据力跟踪误差实时调整末端工具手刚度系数的变刚度导纳恒力控制方法, 并结合李雅普诺夫稳定性理论给出了整体控制律的收敛性证明. 针对刚柔两种末端工具手和多种不同的曲面工件开展了实验研究, 并与传统PID控制方法和传统导纳控制方法进行了对比, 其结果表明本文所提出的复合控制方法可在不同工况条件下实现机器人运动过程中接触力的快速柔顺调节, 并获得4.55%以内的最优力控误差效果, 证明了本文所提出方法的有效性与可行性.  相似文献   

12.
《Advanced Robotics》2013,27(3):153-168
Many studies have been performed on the position/force control of robot manipulators. Since the desired position and force required to realize certain tasks are usually designated in the operational space, the controller should adapt itself to an environment and generate the control force vector in the operational space. On the other hand, the friction of each joint of a robot manipulator is a serious problem since it impedes control accuracy. Therefore, the friction should be effectively compensated for in order to realize precise control of robot manipulators. Recently, soft computing techniques (fuzzy reasoning, neural networks and genetic algorithms) have been playing an important role in the control of robots. Applying the fuzzy-neuro approach (a combination of fuzzy reasoning and neural networks), learning/adaptation ability and human knowledge can be incorporated into a robot controller. In this paper, we propose a two-stage adaptive robot manipulator position/force control method in which the uncertain/unknown dynamic of the environment is compensated for in the task space and the joint friction is effectively compensated for in the joint space using soft computing techniques. The effectiveness of the proposed control method was evaluated by experiments.  相似文献   

13.
An approach to the synthesis of control laws stabilizing motion and force in contact tasks, based on the exponential stability of the closed-loop control system, is described. When using the synthesized control laws, simultaneous stabilization of both motion and force is achieved with a preset quality of the transient responses. The task is solved in a most general form, taking into account the constraints on robot control, its position and the force of interaction of the robot and the environment, and the external perturbations and inaccuracies of the measuring sensors, when the environment dynamics is being described by nonlinear second-order differential equation, and the robot dynamics includes the third-order equations of the robot actuators dynamics.  相似文献   

14.
A principle of ‘joint-space orthogonalization’ is proposed as an extended notion of hybrid (force and position) control for robot manipulators under geometric constraints. The principle realizes the hybrid control in a strict sense by letting position feedback signals be orthogonal in joint space to the contact force vector whose components exert at corresponding joints. This orthogonalization is executed via a projection matrix computed in real-time from a Jacobian matrix of the constraint equation in joint coordinates. To show the important role of the principle in control of robot manipulators, two basic set-point control problems are analysed. One is a hybrid PID control problem for robot manipulators under geometric endpoint constraint and another is a coordinated control problem of two arms. It is shown that passivity properties of residual dynamics of robots follow from the introduction of a quasi-natural potential and the joint-space orthogonalization. Various stability problems of PID-type feedback control schemes without compensating for the gravity force and with or without use of a force sensor are discussed from passivity properties of robot dynamics with the aid of the hyper-stability theory.  相似文献   

15.
This paper investigates the problem of impendance control using a unified approach to contact tasks control in robotics, where the interpretation of the contact between the robot and its known environment is based on a sufficiently correct treating of interaction between the environment and robot dynamics. Apart from brief survey of all more important results in the field of impedance control, it will be shown that, from the standpoint of the active compliance method which considers the control with respect to position and force simultaneously, impedance control can be considered as one particular case. The direct aim of the paper is to improve the transient dynamic response immediately after the contact. In that way the performance of impedance control is improved just in the phase in which its quality is of decisive importance.  相似文献   

16.
Quadruped robots working in jungles, mountains or factories should be able to move through challenging scenarios. In this paper, we present a control framework for quadruped robots walking over rough terrain. The planner plans the trajectory of the robot's center of gravity by using the normalized energy stability criterion, which ensures that the robot is in the most stable state. A contact detection algorithm based on the probabilistic contact model is presented, which implements event-based state switching of the quadruped robot legs. And an on-line detection of contact force based on generalized momentum is also showed, which improves the accuracy of proprioceptive force estimation. A controller combining whole body control and virtual model control is proposed to achieve precise trajectory tracking and active compliance with environment interaction. Without any knowledge of the environment, the experiments of the quadruped robot SDUQuad-144 climbs over significant obstacles such as 38 cm high steps and 22.5 cm high stairs are designed to verify the feasibility of the proposed method.  相似文献   

17.
The complexity in planning and control of robot compliance tasks mainly results from simultaneous control of both position and force and inevitable contact with environments. It is quite difficult to achieve accurate modeling of the interaction between the robot and the environment during contact. In addition, the interaction with the environment varies even for compliance tasks of the same kind. To deal with these phenomena, in this paper, we propose a reinforcement learning and robust control scheme for robot compliance tasks. A reinforcement learning mechanism is used to tackle variations among compliance tasks of the same kind. A robust compliance controller that guarantees system stability in the presence of modeling uncertainties and external disturbances is used to execute control commands sent from the reinforcement learning mechanism. Simulations based on deburring compliance tasks demonstrate the effectiveness of the proposed scheme.  相似文献   

18.
This article presents object handling control between two-wheel robot manipulators, and a two-wheel robot and a human operator. The two-wheel robot has been built for serving humans in the indoor environment. It has two wheels to maintain balance and is able to make contact with a human operator via an object. A position-based impedance force control method is applied to maintain stable object-handling tasks. As the human operator pushes and pulls the object, the robot also reacts to maintain contact with the object by pulling and pushing against the object to regulate a specified force. Master and slave configuration of two-wheel robots is formed for handling an object, where the master robot or a human leads the slave robot equipped with a force sensor. Switching control from position to force or vice versa is presented. Experimental studies are performed to evaluate the feasibility of the object-handling task between two-wheel mobile robots, and the robot and a human operator.  相似文献   

19.
In human–robot interaction, the robot controller must reactively adapt to sudden changes in the environment (due to unpredictable human behaviour). This often requires operating different modes, and managing sudden signal changes from heterogeneous sensor data. In this paper, we present a multimodal sensor-based controller, enabling a robot to adapt to changes in the sensor signals (here, changes in the human collaborator behaviour). Our controller is based on a unified task formalism, and in contrast with classical hybrid visicn–force–position control, it enables smooth transitions and weighted combinations of the sensor tasks. The approach is validated in a mock-up industrial scenario, where pose, vision (from both traditional camera and Kinect), and force tasks must be realized either exclusively or simultaneously, for human–robot collaboration.  相似文献   

20.
This paper discusses a model refernce adaptive (MRAC) position/force controller using proposed neural networks for two co-operating planar robots. The proposed neural network is a recurrent hybrid network. The recurrent networks have feedback connections and thus an inherent memory for dynamics, which makes them suitable for representing dynamic systems. A feature of the networks adopted is their hybrid hidden layer, which includes both linear and nonlinear neurons. On the other hand, the results of the case of a single robot under position control alone are presented for comparison. The results presented show the superior ability of the proposed neural network based model reference adaptive control scheme at adapting to changes in the dynamics parameters of robots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号