首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在Gleeb-3500型热模拟试验机上对铸态GCr15SiMn轴承钢进行热压缩试验,研究了变形温度(1 223~1 423K)和应变速率(0.1~10.0s~(-1))对流变应力的影响,观察了显微组织;采用基于TEGART和SELLARS等提出的Arrhenius方程,通过试验数据的拟合建立了试验钢的流变应力本构方程,并进行了验证。结果表明:在试验条件下变形时,试验钢的流变曲线均呈现出动态再结晶软化特征,提高变形温度或降低应变速率均可降低其流变应力;在应变速率1.0s~(-1)条件下,升高变形温度会促进试验钢的动态再结晶,同时也使晶粒长大粗化;在变形温度1 423K、应变速率0.1~1.0s~(-1)条件下,应变速率越大,动态再结晶晶粒越细;由建立的流变应力本构方程预测得到的峰值应力与试验结果的平均相对误差为0.393%,说明本构方程较准确。  相似文献   

2.
采用Gleeble-3500型热模拟试验机对FV520B马氏体不锈钢进行了单道次等温热压缩试验,研究了该不锈钢在变形温度为850~1 150℃和应变速率为0.005~5.000s~(-1)条件下的热变形行为,根据应力-应变曲线并基于Zener-Hollomon参数和Arrhenius双曲正弦方程,建立了该不锈钢在高温压缩时的本构方程,并对该本构方程进行了修正和试验验证。结果表明:FV520B马氏体不锈钢的流变应力随着变形温度的升高或应变速率的减小而降低;在0.005s~(-1)、1 000~1 150℃或0.050~5.000s~(-1)、1 075~1 150℃条件下,该不锈钢发生了较明显的动态再结晶;在0.005s~(-1)、850℃,5.000s~(-1)、850℃和5.000s~(-1)、925℃条件下,由建立的本构方程计算得到的流变应力与试验值存在较大的误差;对本构方程进行修正之后,流变应力的预测值与试验值的相关系数为0.997 88,平均相对误差为2.225%,修正后的本构方程可以准确地预测该不锈钢的热变形流变应力。  相似文献   

3.
新型TA32钛合金板的高温拉伸变形行为   总被引:1,自引:0,他引:1  
在变形温度650~850℃、应变速率0.001~0.100s-1条件下对TA32钛合金板进行高温拉伸试验,研究了变形温度和应变速率对合金高温拉伸变形行为的影响;基于修正的Hooke定律和Grosman方程建立TA32钛合金的高温流变本构方程并进行试验验证。结果表明:TA32钛合金的流变应力受变形温度和应变速率的影响显著,变形温度的升高和应变速率的降低均会使流变应力减小;在变形温度650℃、应变速率0.100s-1下,合金的抗拉强度为680 MPa,约为常温抗拉强度的80%,合金仍具有较高的强度;当变形温度由750℃升至850℃时,合金伸长率的增长幅度和强度的下降幅度均较明显,合金塑性较好;采用建立的高温流变本构方程计算得到的真应力-真应变曲线与试验结果基本吻合,其相关系数和平均相对误差分别为0.979 4和11.1%,该本构模型可较好地描述TA32钛合金的高温拉伸变形行为。  相似文献   

4.
利用Gleeble-3500型热模拟机对AM60镁合金板进行热拉伸试验,研究了镁合金在变形温度200~350℃、应变速率0.01~0.1 s-1下的热变形行为;对Johnson-Cook方程应变硬化部分进行修正并考虑应变速率和变形温度的耦合效应,基于热拉伸试验数据建立了修正Johnson-Cook本构方程,利用该方程进行冲压有限元模拟,并进行了试验验证。结果表明:AM60镁合金的流变应力与应变速率呈正相关,与变形温度呈负相关;采用修正Johnson-Cook本构模型预测得到AM60镁合金冲压真应力-真应变曲线与试验结果吻合较好,最大相对误差为18.28%,相比于未修正模型降低了57.61%;模拟得到200~350℃下冲压成形的筒形件成形良好,无表面缺陷,与试验结果一致。  相似文献   

5.
在304不锈钢成分基础上,添加了质量分数1.96%的硼元素,采用真空感应熔炼技术制备含硼不锈钢,对该钢进行单道次热压缩试验,研究了该钢在900~1150℃ 和应变速率0.1~10 s-1条件下的热变形行为;根据试验数据,基于Arrhenius方程并结合5次多项式拟合建立该钢的热变形本构模型,对加工硬化率-真应力曲线进行分析确定该钢发生动态再结晶的临界条件.结果表明:在试验参数下热压缩后,含硼不锈钢的流变应力-应变曲线为典型的动态再结晶型,软化机制以动态再结晶为主;随着变形温度的升高或应变速率的减小,试验钢的峰值应力及其对应的真应变降低;采用所建立的热变形本构方程计算得到的真应力-真应变曲线与试验测得的相吻合,平均相对误差绝对值为2.76%,说明该本构模型能够准确预测含硼不锈钢的热变形行为;变形温度较高、应变速率较小时,该钢较易发生动态再结晶.  相似文献   

6.
采用热模拟方法研究了18CrNiMo7-6齿轮钢在变形温度900~1 150℃、应变速率0.01~5 s-1条件下的热压缩变形行为;建立了基于Arrhenius模型的全应变本构方程,采用该方程对流变应力曲线进行预测;根据动态材料模型绘制热加工图,并结合热加工图系统地研究显微组织演变特征。结果表明:试验钢的峰值应力随应变速率的增加或变形温度的降低而增大,动态回复和动态再结晶是热变形过程中的主要软化机制;采用建立的全应变本构方程预测得到流变应力曲线与试验结果基本吻合,预测真应力与试验结果的相对误差小于4.715%,说明该模型可以精确地模拟18CrNiMo7-6齿轮钢的热压缩变形行为。试验钢的适合热加工工艺参数为变形温度1 050~1 150℃、应变速率0.1~1 s-1,此时组织为均匀细小的再结晶晶粒,晶粒尺寸在5~15μm。随着变形温度的升高或应变速率的降低,原始奥氏体晶粒不断被动态再结晶晶粒取代,且动态再结晶程度和再结晶晶粒尺寸增大。  相似文献   

7.
分别利用液压试验机和分离式霍普金森压杆试验装置对38CrMoAl高强度钢进行低应变速率(10-4,10-3,10-2s-1)下的准静态压缩试验和高应变速率(850~4500 s-1)下的动态压缩试验,研究了该钢的动态压缩力学性能以及动态压缩后的显微组织;考虑应变速率强化效应和绝热效应对Johnson-Cook(J-C)本构模型进行修正,并进行了试验验证.结果表明:试验钢的真实屈服强度随着压缩应变速率的增加而增大,表现出应变速率强化效应;经高应变速率压缩后,试验钢中出现了具有一定耐蚀性的强化区;修正后的J-C本构模型预测得到试验钢在不同应变速率下的真应力与试验结果的平均相对误差范围为1.76%~3.99%,这表明修正后的J-C本构模型能够准确地描述该钢的动态压缩力学特性.  相似文献   

8.
在变形温度为750~950℃、应变速率为0.1~0.001s-1下进行Ti2AlNb合金高温拉伸试验,研究了温度和应变速率对其抗拉强度和伸长率的影响,建立了高温变形条件下的应力-应变本构模型。结果表明:Ti2AlNb合金是温度和应变速率敏感性材料,随着温度的升高或应变速率的降低,合金的抗拉强度下降,伸长率升高;通过修正Hooke定律和Grosman方程所建立的Ti2AlNb合金热成形本构方程,其计算得到的流变曲线和试验曲线较吻合,可用于表征Ti2AlNb合金的高温变形行为。  相似文献   

9.
采用热模拟试验机研究了QD08低碳钢在变形温度1 000~1 200℃和应变速率0.1~10s-1条件下的高温变形行为,得到了该钢的高温真应力-真应变曲线,分析了该钢在高温变形过程中的动态再结晶行为,并基于双曲正弦形式的Arrhenius方程建立了该钢的热变形本构方程。结果表明:在高温变形过程中,QD08低碳钢的峰值应力随变形温度的降低或应变速率的增大而增加;通过本构方程计算得到峰值应力的预测值与试验值相吻合,可以较好地描述QD08低碳钢的高温变形行为。  相似文献   

10.
采用Gleeble-3180型热模拟试验机对2219铝合金进行单道次热压缩试验,研究了该铝合金在温度为200~350℃、应变速率为0.1~10.0s-1条件下的流变行为,建立了2219铝合金热压缩时的流变应力本构方程,并进行了试验验证。结果表明:2219铝合金的流变应力随应变速率的增大或变形温度的降低而增加;由Fields-Backofen本构方程计算得到的2219铝合金应力的变化规律与试验得到的相同,且应力计算值与试验值的相对误差小于5%,该本构方程可以较准确地描述2219铝合金的高温流变行为。  相似文献   

11.
采用热模拟试验机对60Si2CrVAT高强度弹簧钢在不同温度(900,950,1 050,1 150℃)和应变速率下(0.1,1,5,10s~(-1))进行热压缩变形,研究了变形温度和应变速率对该钢热变形行为的影响规律;在此基础上,根据Arrhenius双曲正弦方程,建立了该钢的热压缩变形本构方程。结果表明:该钢的流变应力随着变形速率的增大而增大,随变形温度的升高而减小,动态再结晶在高变形温度和低应变速率下更容易发生;真应变为0.2时的变形激活能为372kJ·mol~(-1),流变应力的计算值与试验值之间的平均相对误差为4.89%,吻合得较好。  相似文献   

12.
邱亮 《一重技术》2010,(3):36-38
利用Gleeble热力模拟试验机在温度为1 123~1 473 K和应变速率为0.001~0.1 s-1的条件下对试验钢进行了热压缩变形试验,测定了其真应力-应变曲线,试验结果表明:试验钢在热压缩变形过程中发生了明显的动态再结晶,流变应力随变形温度的降低和应变速率的提高而增大。通过线性回归分析确定了试验钢的流变应力本构方程。  相似文献   

13.
采用Gleeble-1500D型热模拟试验机对Cr9Mo高合金钢进行热压缩变形,研究了该钢在温度1 173~1 473 K和应变速率10-3~1 s-1条件下的热塑性变形行为;并基于经典的应力-位错关系和动态再结晶动力学理论,分别建立了Cr9Mo钢的加工硬化-动态回复和动态再结晶两阶段的流变应力本构方程。结果表明:所建立的两个阶段的流变应力本构方程与试验曲线吻合较好,可以用该方程来预测Cr9Mo钢的高温流变行为。  相似文献   

14.
采用Gleeble-3500型热力模拟试验机对新型CHDG-A06奥氏体不锈钢进行单道次压缩试验,研究了其在变形温度为950~1 100℃、应变速率为0.01~1s~(-1)条件下的热变形行为,并对变形后的显微组织进行了观察;根据试验钢的应力-应变曲线,通过线性回归建立了它的高温热变形本构模型。结果表明:在热变形过程中,变形温度和应变速率对流变应力的影响显著,流变应力随着变形温度的升高或应变速率的降低而降低;动态再结晶易发生在较低应变速率(≤0.1s~(-1))或较高变形温度(≥1 050℃)下;利用峰值应力求得该钢的双曲线正弦本构方程,并得到其热变形激活能为453.674 4kJ·mol~(-1)。  相似文献   

15.
通过热模拟试验机测定了Fe-3.0%Si-0.09%Nb取向硅钢在不同变形温度和应变速率下的真应力-真应变曲线,分析了变形参数对流变应力的影响规律,通过线性回归分析计算出该取向硅钢的热变形应力指数n以及变形激活能Q,并构建了流变应力本构方程。结果表明:该取向硅钢的真应力-真应变曲线为动态回复型,其变形时的流变应力主要取决于变形温度和应变速率;当应变速率一定时,流变应力随着变形温度的升高而减小;变形温度一定时,流变应力随着应变速率的增大而增大;用构建的Fe-3.0%Si-0.09%Nb取向硅钢流变应力本构方程计算得到的流变应力与通过试验测得的结果相吻合。  相似文献   

16.
在常温下对SUS301L-MT不锈钢进行了应变速率为0.000 5 s-1的准静态和0.1~500 s-1的动态拉伸试验,基于经典J-C模型拟合得到其应力-应变曲线,通过最大拟合优度和匹配优度确定应变速率敏感系数,对经典J-C本构模型的模拟准确性进行分析;引入动态放大模量确定马氏体相变强化和绝热温升软化的临界应变,对J-C模型进行修正,并对修正模型的拟合结果进行了验证。结果表明:经典J-C本构模型无法准确描述试验钢在高应变速率塑性变形时的马氏体相变强化效应和绝热温升软化效应;修正后的J-C本构模型可准确描述应变速率在0.000 5~500 s-1时试验钢的力学行为,其匹配优度高达0.985,表明该模型合理有效。  相似文献   

17.
采用Gleeble-3800型热力模拟试验机,在温度为1 123~1 423K、应变速率为0.01~10 s-1的条件下,对40Cr Ni2Mo E钢进行了高温轴向单道次压缩变形试验,根据压缩试验结果绘制了高温塑性流变曲线,并观察了变形后的显微组织。结果表明:该钢的流变应力和峰值应变随着变形温度的升高和应变速率的降低而减小;在真应变为0.9,应变速率为0.01~10 s-1的条件下,随着应变速率的提高,其发生完全动态再结晶的温度也逐渐升高;当应变速率为10 s-1,变形温度高于1 323 K时,该钢才会发生完全动态再结晶;计算得到40Cr Ni2Mo E钢的热变形激活能为333.726 k J·mol-1,并建立了该钢动态再结晶条件下峰值应变与Zener-Hollomon因子的定量关系以及高温塑性变形本构方程。  相似文献   

18.
在不同温度(1 173.15~1 473.15 K)和应变速率(0.01~10 s-1)下对430不锈钢进行热压缩变形试验,基于流变数据建立修正的Zerilli-Armstrong方程,并评估该方程的预测能力;将该本构方程参数导入Deform-3D软件,对试验钢五道次可逆热轧变形进行有限元模拟,分析边部缺陷的形成过程,并与实际轧制缺陷进行了对比。结果表明:修正的Zerilli-Armstrong本构方程能够很好地描述试验钢的高温流变行为,流变应力预测值和试验值之间的相关系数为0.993 9,平均相对误差为5.9%;模拟得到在轧制过程中轧辊与板坯之间的摩擦力使得板坯表面和内部存在横向位移差,导致板坯侧面节点上翻到表面形成边部侧翻缺陷,缺陷的位置和形貌与工业试制结果相吻合。  相似文献   

19.
采用分离式霍普金森压杆试验研究了GH4169高温合金在温度20~400℃和应变速率1 000~3 000s-1时的流变应力-应变曲线,利用Zerilli-Armstrong(Z-A)本构模型描述了流变应力与应变的关系,确定了本构模型的参数,并对该模型进行试验验证。结果表明:GH4169高温合金存在明显的应变速率强化效应和温度软化效应,流变应力和应变呈近线性关系;所建立的Z-A本构模型能够准确地描述GH4169高温合金在不同温度和不同应变速率下的流变行为,其平均相对误差的平均值为2.65%。  相似文献   

20.
采用有限元软件ABAQUS/Explicit进行3D微铣削模拟仿真,将应变梯度塑性理论引入到材料的本构方程中,来表征材料的微观尺度变形特性,计算出微铣削过程中的应变率,进行Johnson-Cook(J-C)本构方程的修正。修正后的本构方程表现出随着未变形切削厚度的增加,材料力学性能曲线逐渐向宏观J-C模型靠近的特点。通过MATLAB软件绘制出修正的J-C本构模型的应力-应变-温度的关系曲线,并将这些数据导入到ABAQUS材料库中,进行考虑尺寸效应现象的3D微铣削模拟仿真。分别研究了不同的主轴转速、每齿进给量以及轴向切削深度对微铣削力和应力的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号