首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characteristics of liquid ethanol diffusion flames from mini tube nozzles   总被引:1,自引:0,他引:1  
A series of experiments was conducted to explore the combustion characteristics of a diffusion flames from mini tubes fueled by liquid ethanol with visual observations of the flame shape, the dynamic liquid-vapor interface during phase change inside the capillary tubes and the tube outer surface temperature using CCD and IR cameras. As the fuel supply rate increased, the interface location rose to the tube exit and the temperature gradient on the outer tube surface increased, consequently the evaporating became much stronger and the interface tended to be unstable. The combustion characteristics are closely related to the rapid phase change and violent evaporation and interfacial dynamics, with the violent evaporation, actually explosive boiling, inducing an explosive flame. The intensity of the explosive flame became stronger as the flowrate increased with the maximum flame height, interface location movement, and sound intensity all significantly increasing. The periodicity of the explosive flame was directly proportional to the interface moving distance and inversely proportional to the fuel flow rate.  相似文献   

2.
We report on the application of simultaneous single-shot imaging of CH and OH radicals using planar laser-induced fluorescence (PLIF) to investigate partially premixed turbulent jet flames. Various flames have been stabilized on a coaxial jet flame burner consisting of an outer and an inner tube of diameter 22 and 2.2 mm, respectively. From the outer tube a rich methane/air mixture was supplied at a relatively low flow velocity, while a jet of pure air was introduced from the inner one, resulting in a turbulent jet flame on top of a laminar pilot flame. The turbulence intensity was controlled by varying the inner jet flow speed from 0 up to 120 m/s, corresponding to a maximal Reynolds number of the inner jet airflow of 13,200. The CH/OH PLIF imaging clearly revealed the local structure of the studied flames. In the proximity of the burner, a two-layer reaction zone structure was identified where an inner zone characterized by strong CH signals has a typical structure of rich premixed flames. An outer reaction zone characterized by strong OH signals has a typical structure of a diffusion flame that oxidizes the intermediate fuels formed in the inner rich premixed flame. In the moderate-turbulence flow, the CH layers were very thin closed surfaces in the entire flame, whereas the OH layers were much thicker. In the high-intensity-turbulence flame, the CH layer remained thin until it vanished in the upper part of the flame, showing local extinction and reignition behavior of the flame. The single-shot PLIF images have been utilized to determine the flame surface density (FSD). In low and moderate turbulence intensity cases the FSDs determined from CH and OH agreed with each other, while in the highly turbulent case a locally broken CH layer was observed, leading to a significant difference in the FSD results determined via the OH and CH radicals. Furthermore, the means and the standard deviations of CH and OH radicals were obtained to provide statistical information about the flames that may be used for validation of numerical calculations.  相似文献   

3.
利用Fluent软件对1台900 MW四角切圆燃烧锅炉在不同负荷下炉内燃烧过程进行了数值模拟,分析了负荷变化对炉内流动和传热的影响规律.结果表明:在高负荷工况下运行时,炉内燃烧充分且稳定,但是炉内火焰更容易冲刷水冷壁,可能发生局部结渣现象;在低负荷工况下运行时,炉内火焰充满度较差,切圆燃烧的稳定性显著下降,炉膛水冷壁灰污表面温度也相应降低,水冷壁表面结渣的倾向弱化,沿高度方向水冷壁吸热不均匀性增大.由于该锅炉的低NOx燃烧器采用了分离燃尽风,使得高温区扩展,火焰中心高度比采用有关标准推荐的方法计算所得结果高4~5 m.  相似文献   

4.
In the present study, we conducted experiments to investigate the effects of external turbulence on the development of spherical H2/CH4/air unstable flames developments at two different equivalence ratios associated with different turbulent intensities using a spherical constant-volume turbulent combustion bomb and high speed schlieren photography technology. Flame front morphology and acceleration process were recorded and different effects of weak external turbulent flow field and intrinsic flame instability on the unstable flame propagation were compared. Results showed the external turbulence has a great influence on the unstable flame propagation under rich fuel conditions. For fuel-lean premixed flames, however, the effects of external turbulence on the morphology of the cellular structure on the flame front was not that obvious. Critical radius decreased firstly and then kept almost unchanged with the augment of the turbulence intensity. This indicated the dominating inhibiting effect of flame stretch on the turbulent premixed flame at the initial stage of the flame front development. Beyond the critical radius, the acceleration exponent was found increasing with the enhancement of initial turbulence intensity for fuel-lean premixed flames. For fuel-rich conditions, however, the initial turbulence intensity had little effect on acceleration exponent. In order to evaluate the important impact of the intrinsic flame instability and external turbulent flow field for spherical propagating premixed flames, intrinsic flame instability scale and average diameter of vortex tube were calculated. Intrinsic flame instability scale decreased greatly and then stayed unchanged with the propagation of the flame front. The comparison between intrinsic flame instability scale and average diameter of vortex tube demonstrated that the external turbulent flow filed will be more important for the evolution of wrinkle structure in the final stage of the flame propagation, when the turbulence intensity was more than 0.404 m/s.  相似文献   

5.
This study investigates flame propagation in small thermally-participating tubes where the wall acts as a heat-recirculating medium. This fundamental configuration allows heat in the combustion products to be recirculated into the reactants, resulting in excess enthalpy and enhanced burning rates. Preheating of the reactants by heat recirculation has traditionally been considered to be the dominant mechanism leading to large burning rates observed in such systems. This is mainly supported by results from physical models based on a one-dimensional (1-D) representation of the system, where the radial diffusion of heat from wall surface to channel centerline is not accurately captured. In this study, a 2-D formulation with conjugate heat transfer, which accurately resolves the transport of heat inside the gas-wall system, is used to model the excess-enthalpy phenomenon. Steadily-propagating stoichiometric methane–air flames are simulated inside an adiabatic tube of finite wall-thickness, over a wide range of inlet flow velocities and small tube diameters. Burning-rate enhancement is found to be caused not only by preheating, associated with heat recirculation, but also by an increase in flame-front area. Flame elongation is more pronounced with increasing tube diameter and inlet velocity, up to a point where the change in flame-front area becomes dominant in enhancing burning rate. In that case, heat recirculation is a necessary condition for flames to couple to the thermal wave in the wall and elongate, but does not provide a significant increase in enthalpy or temperature that would otherwise be needed for high burning rates to be observed. As the diameter is reduced, the effect of preheating becomes increasingly important for burning-rate enhancement compared to flame area increase. At very small diameters, smaller than the flame thickness, the increase in burning rate is seen to be predominantly attributable to preheating. However, preheating is seen to become limited as inflow velocity is increased, due to 2-D effects inside the fluid that interfere with heat recirculation. These findings demonstrate that 2-D effects inside the fluid can have a prohibitive influence on the burning-rate enhancement attributed to preheating, but that they also give rise to an additional mechanism, associated with the change in flame surface area, responsible for burning-rate enhancement in heat-recirculating burners.  相似文献   

6.
Stable combustion in a heated tube, with a radius on the order of the flame thickness, is investigated experimentally and numerically. The downstream portion of the tube is heated by an external heat source resulting in a steady, axially varying temperature gradient along the tube wall. Strongly burning, axisymmetric methane/air flames are stabilized inside this wall temperature profile which are observed to be “flat” for sufficiently small tube dimensions. The position of these flames is dictated by a competition between the energy required to preheat the reactants, that released by combustion, and the heat lost to the wall. To model such flames, an extension to the standard 1-D, volumetric flame formulation is proposed to solve for wall/gas heat transfer by employing a thermal boundary layer. The boundary layer utilizes a non-linear, radially-varying heat source to account for combustion and captures the effect of enhanced interfacial heat transfer inside the reaction zone. The proposed numerical model gives improved quantitative predictions for flame stabilization position than approaches which neglect the effect of heat release by modeling heat transfer with Newton’s law of cooling and a local Nusselt number.  相似文献   

7.
Soot concentration and temperature distributions within the flame envelope of laminar diffusion flames of methane and ethane at elevated pressures were measured in a high-pressure combustion chamber. Methane measurements were made with two different fuel flow rates: 0.43 mg/s (0.32 mg/s carbon flow rate) for the pressure range of 15–60 atm, and 0.83 mg/s for the pressure range of 5–20 atm (0.62 mg/s carbon flow rate). For the ethane flames, the flow rate was 0.78 mg/s (0.62 mg/s carbon flow rate) and the pressure range was 2–15 atm. From the soot concentration distribution, soot yields were calculated as a function of flame height and pressure. Maximum soot yields from the current study and the previous measurements in similar flames with methane, ethane, and propane flames were shown to display a unified behaviour. Maximum soot yields, when scaled properly, were represented by an empirical exponential function in terms of the reduced pressure, actual pressure divided by the critical pressure of the fuel. The maximum soot yield seems to reach a plateau asymptotically as the pressure exceeds the critical pressure of the fuel.  相似文献   

8.
为改善燃气轮机燃烧室的火焰筒壁温较高以及污染物排放等问题,提出了在火焰筒的壁面增加二次燃料喷口的轴向分级燃烧模式。利用ANSYS CFX软件并根据化学反应机理计算和分析了燃气轮机轴向分级燃烧室的流场和温度场,并与非分级燃烧室的结果进行了比较。结果表明:增大二次燃料比例可以使火焰筒壁面温度降低、出口污染物质量分数及出口不均匀系数减小,但出口平均温度会随之降低,导致做功能力减小。过量空气系数会影响火焰筒壁温、出口平均温度与NO质量分数。合理的二次燃料比例区间取决于多个条件。  相似文献   

9.
An opposed flow non-premixed flame (OFNPF) in a narrow channel was chosen as a model of a non-premixed flame in a mesoscale combustion space or micro-combustor. The stabilization limits and behaviors of methane-air flames and propane-air flames were compared for various experimental parameters such as flow velocity, nozzle distance, nozzle width, channel gap, and fuel dilution. Flames could be stabilized in a wide range of strain rates (0.9–150 s−1) and dilution ratios (∼80% nitrogen at the fuel side). The flame extinction limits were classified into three types and their mechanisms were investigated: higher-strain-rate (HSR) extinction limit determined by the flame stretch, lower-strain-rate (LSR) extinction limit determined by the conductive or convective heat loss from the flame, and fuel-dilution-ratio (FDR) extinction limit determined by the decrease in the heat release rate from the flames. The HSR extinction limits in mesoscale channels could be explained with a modified strain rate, and the LSR extinction limits could be explained by employing a premixed quenching theory in which the heat loss through the dead space near the wall was considered as a major extinction mechanism. Finally, the variation of the extinction limits with the FDR in both the HSR and the LSR conditions could be explained with a modified global reaction rate in which the variations in flame temperature and species concentrations were reflected. This study provides an essential model for the stabilization and extinction of non-premixed flames in mesoscale combustion spaces.  相似文献   

10.
散热是影响微尺度燃烧器燃烧稳定性的重要因素之一.本实验通过在一个长40 mm、内径2 mm、外径4 mm的石英玻璃直圆管表面施加不同的外部吹风温度,控制其表面散热.研究4、107、756℃外部风温下,微燃烧器的工作性能,其中燃料混合气体流量为0.16、0.28、0.32 L/min.实验测得燃烧器壁面温度,结合数值模拟研究内部燃烧过程.计算结果显示,提高燃料流量或外部风温可以提升反应强度、抑制熄火.如在风温107℃时,燃料气体当量配比下,当流量由0.16 L/min上升到0.32 L/min时,峰值温度由1538 K上升到1620 K;在流量0.28 L/min时,燃料气体当量配比下,当外部风温由4℃上升到756℃时,峰值温度由1592 K上升到1731K.  相似文献   

11.
NumericalSimulationof3-DTemperatureDistributionoftheFlameTubeoftheCombustionChamberwithAirFilmCoolingNumericalSimulationof3-D...  相似文献   

12.
《Combustion and Flame》2003,132(1-2):58-72
The possible burning structures existing in two co-flowing combustible mixtures with different compositions, and their implications to the field of turbulent combustion are examined in this study. A coaxial burner with a quartz plate was used to experimentally investigate the flames of methane/air and propane/air mixtures propagating in a coaxial flow impinging onto a stagnation surface. The possible burning structures were observed to be: (1) a single-flame (a lean or rich premixed flame); (2) a double-flame (two lean or rich premixed flames, or a rich premixed flame and a diffusion flame); and (3) a triple-flame (a rich premixed flame, a diffusion flame and a lean premixed flame). An inner (or outer) mixture, far beyond the flammability limit, can still burn if a stronger outer (or inner) flame supports it. The extinction limit of the top part of the inner hat-shaped premixed flame is nearly independent of the burning intensity of the outer flame. It was found that the inner flame has a wider flammable region than the outer flame, and that the latter has a narrower flashback region than the former. Both propane and methane flames may exhibit flame-front instability, although the former displays much more clearly than the latter. Cellular and polyhedral instabilities can exist individually or appear simultaneously in the inner flame. However, only polyhedral (stripped-pattern) instability was observed in the outer flame. Finally, the experiments were analyzed theoretically using a simple geometrical model incorporated with the numerical simulations. The predicted shapes and locations of the flames are in good agreement with the experimental observations qualitatively.  相似文献   

13.
This paper analyzes the forced response of swirl-stabilized lean-premixed flames to high-amplitude acoustic forcing in a laboratory-scale stratified burner operated with CH4 and air at atmospheric pressure. The double-swirler, double-channel annular burner was specially designed to generate high-amplitude acoustic velocity oscillations and a radial equivalence ratio gradient at the inlet of the combustion chamber. Temporal oscillations of equivalence ratio along the axial direction are dissipated over a long distance, and therefore the effects of time-varying fuel/air ratio on the response are not considered in the present investigation. Simultaneous measurements of inlet velocity and heat release rate oscillations were made using a constant temperature anemometer and photomultiplier tubes with narrow-band OH/CH interference filters. Time-averaged and phase-synchronized CH chemiluminescence intensities were measured using an intensified CCD camera. The measurements show that flame stabilization mechanisms vary depending on equivalence ratio gradients for a constant global equivalence ratio (?g = 0.60). Under uniformly premixed conditions, an enveloped M-shaped flame is observed. In contrast, under stratified conditions, a dihedral V-flame and a toroidal detached flame develop in the outer stream and inner stream fuel enrichment cases, respectively. The modification of the stabilization mechanism has a significant impact on the nonlinear response of stratified flames to high-amplitude acoustic forcing (u′/U ∼ 0.45 and f = 60, 160 Hz). Outer stream enrichment tends to improve the flame’s stiffness with respect to incident acoustic/vortical disturbances, whereas inner stream stratification tends to enhance the nonlinear flame dynamics, as manifested by the complex interaction between the swirl flame and large-scale coherent vortices with different length scales and shedding points. It was found that the behavior of the measured flame describing functions (FDF), which depend on radial fuel stratification, are well correlated with previous measurements of the intensity of self-excited combustion instabilities in the stratified swirl burner. The results presented in this paper provide insight into the impact of nonuniform reactant stoichiometry on combustion instabilities, its effect on flame location and the interaction with unsteady flow structures.  相似文献   

14.
The effects of hydrogen addition, inlet temperature, wall thermal conductivity and wall thickness on the flame-wall coupling of the propane/air flames in a meso-scale tube are numerically investigated using a two dimensional model along with the detailed chemical mechanism. Higher wall thermal conductivity can result in preheating the fresh mixture uniformly in strongly flame-wall coupled system, which is vital to enhance the burning rate of fuel mixture. With the increase of wall thermal conductivity or hydrogen addition, the leading edge of the flame shifts from the wall to the axis, meanwhile the flame is more convex towards the unburned side near the leading edge. As the hydrogen addition and inlet temperature increase, the flame propagation speed increases significantly, while the maximum temperature and maximum total enthalpy decrease due to the reduced heat recirculation power. The flame propagation speed has a negative correlation with heat loss. The chemical reactions in preheat zone are enhanced at low wall thermal conductivity due to the higher inner wall temperature. Thinner combustor wall leads to higher flame speed and higher heat loss simultaneously. Results have implications on the choice of solid wall material and heat recirculation design in a stable meso-scale combustor for different fuels.  相似文献   

15.
Nam Il Kim 《Combustion and Flame》2009,156(7):1332-1338
A flame stabilized in a tube is affected by the temperature disturbance and velocity profile at the inlet boundary. Thus, a multi-dimensional analysis is necessary near the flame. The deviation between one-dimensional and two-dimensional analyses near the flame was investigated quantitatively. The temperature profile in the radial direction was varied to investigate its effects on the propagation of methane-air premixed flames in small tubes. A numerical experiment with Navier-Stokes equations, an energy equation and species equations was conducted coupled with a single-step global-reaction model. Three different temperature profiles were examined for slip and no-slip wall boundary conditions. The effect of temperature profiles on the flame propagation velocity and flame shapes was not negligible depending on the magnitude of the temperature deviation and the tube diameter. This study evaluated a critical length scale of a computational domain or a thermal entrance length of a premixed flame over which the inlet temperature disturbance does not affect the flame characteristics.  相似文献   

16.
《能源学会志》2020,93(4):1690-1696
The combustion process of propane/air premixed flame in meso-scale quartz tubes with different hydrogen additions was investigated experimentally to explain the flame-wall interaction mechanism. The ranges of different flame regimes were obtained by changing the flow rates of propane and hydrogen. The effects of hydrogen addition, inlet velocity and equivalence ratio were analyzed. The results show that the hydrogen addition broadens the operation ranges of fast flame regime and slow flame regime significantly. The flame propagation speed is in the same order of the thermal wave speed in solid wall for the slow flames. In fast flame regime, the flame propagation speed has an inverse correlation with the inlet flow velocity irrespective of the equivalence ratio. With the increase of the equivalence ratio, the maximum flame speed in fast flame regime decreases gradually, while the maximum flame speed in slow flame regime increases continually. It indicates that rich fuel condition suppresses the fast flame and promotes the slow flame. In slow flame regime, the output thermal efficiency is dominated by the inlet velocity and equivalence ratio.  相似文献   

17.
B.C. Choi 《Combustion and Flame》2010,157(12):2348-2356
The autoignition characteristics of laminar lifted flames of methane, ethylene, ethane, and n-butane fuels have been investigated experimentally in coflow air with elevated temperature over 800 K. The lifted flames were categorized into three regimes depending on the initial temperature and fuel mole fraction: (1) non-autoignited lifted flame, (2) autoignited lifted flame with tribrachial (or triple) edge, and (3) autoignited lifted flame with mild combustion.For the non-autoignited lifted flames at relatively low temperature, the existence of lifted flame depended on the Schmidt number of fuel, such that only the fuels with Sc > 1 exhibited stationary lifted flames. The balance mechanism between the propagation speed of tribrachial flame and local flow velocity stabilized the lifted flames. At relatively high initial temperatures, either autoignited lifted flames having tribrachial edge or autoignited lifted flames with mild combustion existed regardless of the Schmidt number of fuel. The adiabatic ignition delay time played a crucial role for the stabilization of autoignited flames. Especially, heat loss during the ignition process should be accounted for, such that the characteristic convection time, defined by the autoignition height divided by jet velocity was correlated well with the square of the adiabatic ignition delay time for the critical autoignition conditions. The liftoff height was also correlated well with the square of the adiabatic ignition delay time.  相似文献   

18.
以头部涡流片加主燃孔形式的小型发动机环形回流燃烧室为研究对象,采用Fluent软件进行了数值研究,对比分析了有无主燃孔、主燃孔相对位置以及主燃孔轴向位置对该类型燃烧室主燃区流场、温度场以及出口温度分布的影响。结果表明:该类型燃烧室主要通过火焰筒头部圆形结构、涡流片形成回流区,而内外环主燃孔的射流主要起到截断主流、促进回流区形成以及改变回流区形态的作用;主燃孔相互交错,有利于促进内外环主燃孔的射流相互对冲剪切,形成较为饱满的回流区;主燃孔轴向位置向燃烧室出口方向移动,主燃孔射流截断主流和挤压主流的效果减弱,出口温度分布系数急剧变大。  相似文献   

19.
A series of visual experiments were conducted for liquid– vapor two‐phase flow in hairpin tubes, and it was observed that most of the nucleation sites were located at the outer tube wall of the bend. From the simulation, it was concluded that the uneven velocity distribution in the bend induced the heat transfer heterogeneity. Furthermore, the nucleation of both the inner and outer tube wall of the bend and the wall temperature distribution were discussed to understand the physical phenomena. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20269  相似文献   

20.
渐变型多孔介质中预混燃烧温度分布试验   总被引:3,自引:0,他引:3  
进行了预混天然气在等孔隙率渐近变孔径的多孔介质中的燃烧试验,用热电偶测量了燃烧室温度分布,并与单一孔径(d=1mm)的均匀多孔介质中燃烧结果进行了比较。结果表明,渐变型多孔介质燃烧器比均匀型多孔介质燃烧器具有更多的优点:燃烧室温度分布更加均匀,燃烧更加稳定,并能更好的适应当量比和流量/功率的变化,由于孔径的变化,多孔介质中气流扰动增加,有利于火焰的稳定,当量比和流速变化范围增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号