首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 239 毫秒
1.
对He、Ti原子比n(He)/n(Ti)为0.004~0.300的7块氚化钛膜样品在1300K以下进行热解吸分析,以获得它们的热解吸谱。在低于1300K范围内,氚化钛膜共有4种氦的热释放峰,分别对应于贯穿至表面的氦泡、近表面的氦、体相中的氦泡和氦的小团簇。对这4种类型的氦释放峰的解吸温度和解吸量随膜中总氦量的变化分别进行分析,研究观测膜中各种状态存在的氦量随n(He)/n(Ti)增加的变化趋势。实验观测到,升温将导致氚化钛膜可容纳的氦量大幅降低。  相似文献   

2.
采用直流磁控溅射方法,通过分别改变衬底温度及He分压来制备不同氦含量的钛膜。利用PBS、XRD、TEM及AFM分别对钛膜中的He含量、平均晶粒尺寸及膜的表面形貌进行分析。结果表明:在不同温度范围内,温度变化对所制备钛膜中He含量的影响明显不同;He含量与晶粒尺寸直接相关,氦原子进入钛膜后,抑制了晶粒的长大;随着钛膜中He与Ti的原子个数比由1.0%增加到11.9%,TEM测得的平均晶粒尺寸由约35nm减小到约4nm;选择合适的He分压,能够制备出He含量较高的氦钛膜。  相似文献   

3.
将工业纯铝抛光后进行He离子注入,注入剂量为3×1020 m-2,注入能量为500 keV。利用SRIM软件模拟预测得离子注入后He原子在距表面1.8 μm处浓度最高。将He离子注入样品,在190 ℃时效192 h,促进氦泡的形成和长大,用透射电子显微镜观测样品深度方向上氦泡的分布。结果显示,距表面约1.8 μm处氦泡密度最大,说明 He原子浓度最高,与SRIM软件模拟预测结果一致。同时发现,晶界处氦泡的尺寸较晶粒内的大,说明晶界有利于氦泡的形成和长大;晶界两侧不同晶粒内氦泡尺寸有较大差异,可能是因为晶粒取向不同造成晶粒中氦泡的形核长大过程不同,说明晶粒取向对氦泡的合并长大行为可能有显著影响。  相似文献   

4.
为研究不同晶粒尺寸纳米钛膜的储氦行为,在He-Ar混合气体下,用磁控溅射方法沉积纳米晶钛膜,利用PBS(proton backscattering)、XRD(X-ray diffraction)对膜的氦含量和微观结构及晶粒大小进行了研究.结果表明:在其它实验参数不变的情况下,当沉积温度从60℃升至350℃时得到均匀分布的含氦量(指原子百分比)从38.6%逐渐降至9.2%的钛膜,其平均晶粒由13.1 nm增加到44.2 nm;当He/Ar分压比分别为6、10、15、19时得到均匀分布的含氦量分别为17.6%、47.2%、48.3%和38.6%的钛膜.He的引入引起(002)晶面衍射峰向小角度移动,但(100)晶面衍射峰不变,即晶胞参数c增加,a不变化;随膜中He含量的增加,衍射峰展宽,晶粒变小,显示出氦的掺入有抑制纳米晶粒长大的趋势.  相似文献   

5.
利用磁控溅射方法在Ti、TiZr和TiMo合金膜中引入氦并进行热处理后,用透射电镜观察膜材中的氦泡。所观察到的氦泡可为多面体形或球体形,或多数为球形化的多面体形。在800℃热处理后的Ti和TiZr合金中均观察到规则的六边形和八边形氦泡,对应基体材料单晶平衡外形多面体的投影。720℃热处理40min后,TiZr合金膜中的氦泡比同样温度热处理130min后的接近球形。在600~650℃热处理30~60min后,合金中的氦泡比纯Ti中的氦泡更接近球形,生长受到的阻碍更大。除热处理温度、时间和合金成分外,晶界和其他氦泡也会影响氦泡形貌。在三叉晶界处的氦泡比晶界处的氦泡圆滑。氦泡在与其他氦泡邻近的部分会变得圆滑,促使自身向对方运动,促进氦泡的合并、长大。  相似文献   

6.
在室温~400℃范围内,用卢瑟福质子背散射技术测量了100keV、注入剂量2 2×1018cm-2的纳米晶粒钛膜中氦的浓度分布、不同温度下的剂量保持及其浓度释放。室温下经210d后,氦在该纳米晶粒钛膜中的剂量保持达68%,其He Ti原子比为52 6%;100℃下氦的保持剂量为室温下的89 6%,此时的He Ti原子比为44%;400℃下的保持剂量为室温下的32 6%,He Ti原子比为17 1%。同时观察到了氦的释放随温度上升呈现波浪式的变化特点。从能量稳定性观点初步探讨了纳米晶粒钛膜有效保持氦的可能机制。  相似文献   

7.
采用He/Ar复合气氛下磁控溅射方法,在Ti、TiZrYAl 和TiMoYAl等3种薄膜中引入浓度(氦-金属比)高达0.19的氦.引入的氦在膜层内沿深度均匀分布,并主要存在于直径为2~5 nm的高压He泡内.热解吸实验表明,在相同He含量下,TiHe膜中He的解吸峰温度与氚化钛中衰变产生的3He的解吸峰温度基本一致.与纯钛相比,合金膜中氦的热解吸谱宽化明显,表明He在合金膜内的捕获形式更为复杂.  相似文献   

8.
充氚不锈钢中氦行为的PAL和TEM研究   总被引:1,自引:0,他引:1  
对充氚和未充氚的抗氢-2(HR-2)不锈钢样品进行退火处理,利用正电子湮没寿命谱(PAL)以及透射电镜(TEM)等技术探讨不锈钢中氦和微缺陷的相互作用。未充氚样品中,退火温度对缺陷态的影响主要表现为偏聚物在晶界的析出。充氚样品实验中,退火温度小于300℃时,充氚不锈钢中的He原子主要通过自捕获机制在晶内缺陷处聚集成泡;热处理温度为300~600℃时,充氚不锈钢中的He原子主要通过热迁移的方式迁移至晶界导致晶界宽化,但晶界处无明显的He泡形成;热处理温度大于600℃时,热平衡空位开始发挥作用,与聚集在晶内缺陷处的He原子结合形成He泡,且随退火温度的升高,He泡有明显聚合长大的现象。  相似文献   

9.
在托卡马克聚变装置中,钨偏滤器会受到低能高束流的氦等离子体冲刷,导致材料表面形成绒毛状纳米结构或针孔状表面损伤,使钨材料使用性能发生退化,影响等离子体的稳态运行。目前普遍认为,氦致表面损伤的形成与钨表面下氦泡的生长密切相关。钨受到氦等离子体辐照后会在材料的近表层形成高密度的小氦泡,它们可通过融合的方式长大,氦泡的融合是近表层大氦泡形成的关键环节。为了解氦泡的相对位置、温度、氦空位比(He/V)、氦泡初始间距对氦泡融合的影响,本文采用分子动力学方法模拟氦泡在金属钨中的融合过程。结果表明:氦泡的相对位置、温度、He/V、氦泡初始间距都会影响氦泡的融合,但影响的机理并不相同。其中,氦泡的相对位置是影响氦泡融合的关键因素,当氦泡沿〈100〉方向排列时,氦泡易发生融合,而沿 〈111〉方向排列则不易发生融合,其原因是氦泡附近存在各向异性的应力场。温度升高有利于氦泡体积得到更快、更充分的弛豫,进而促进氦泡发生融合。高He/V的氦泡具有较高的压力,更易发生融合。当温度为1 500 K时,2个He/V为3、半径为1 nm的氦泡之间的相互作用距离可达1.28 nm甚至更远,但它们发生融合的最大初始距离为0.96 nm。本研究可促进对钨中氦泡融合机理的理解,为钨中大氦泡的形成提供可能的解释。此外,本研究结果可为大尺度模拟(如动力学蒙特卡罗、团簇动力学)提供相关输入参数用于研究高密度氦泡的长时间演化。  相似文献   

10.
利用氦离子(He+)束和电子(e-)束双束同时辐照化学溶胶法制备的新型12Cr-ODS铁素体钢.实验结果表明,辐照初期,随着辐照剂量增加,点缺陷团(黑斑)在基体内形成,密度不断增大,尺寸长大缓慢,辐照剂量为0.8dpa时形成问隙型位错环.不同试验温度下,辐照均产生小尺寸高密度的空洞,随着辐照剂量增加,空洞尺寸长大缓慢,...  相似文献   

11.
分别从理论和实验上研究了钛镆中氦泡演化对离子束背散射能谱(RBS)的影响。理论分析表明能谱的展宽除了受材料的能量阻止和多重散射效果及实验系统特性的影响外,氦泡也是一个重要的影响因素。理论上,当由离子束分析给出氦泡占材料的体积分数及氦泡引起的能散时,可计算出氦泡的尺寸和密度。实验结果显示了含氦钛镆RBS谱后沿随着氦浓度和退火温度的升高逐渐展宽,表明随着氦泡尺寸和浓度的变大,离子束分析能谱也不断展宽。这使在考虑了材料中氦泡的影响后,离子束分析能真实地反映材料的性质,同时也可从离子束分析得出材料中氦泡的演化信息。  相似文献   

12.
Platelets of helium in molybdenum have been observed to collapse into several small helium bubbles rather than into a single bubble [10]. We show that the driving force for collapse into n bubbles increases as n decreases. However, kinetic factors associated with the nucleation of ledges on the flat faces of the platelets ensure that the frequency of nucleation of several small bubbles far exceeds that for a single bubble. The temperature at which this collapse is expected correlates well with the observed platelet behaviour.  相似文献   

13.
本文采用分子动力学方法模拟了金属钛中氦泡的融合,分析了氦泡融合对金属微结构的影响,对比了氦泡在金属块体内部与接近金属表面处融合的异同。研究表明:在金属块体内部,两氦泡的融合会在其周围诱发很多缺陷且范围逐渐扩大;直径均为1.77nm的两氦泡的融合会在二者周围形成位错环,位错环内金属原子的排列与基底的一致;两氦泡发生融合后由哑铃状向椭球形演化。在接近金属表面处,由氦泡融合诱发的缺陷易于向金属表面移动,氦泡周围的金属易于向晶体结构恢复;两氦泡发生融合后由哑铃状向半球形演化。  相似文献   

14.
Low energy (<100 keV) helium implantation of tungsten has been shown to result in the formation of unusual surface morphologies over a large temperature range (700-2100 °C). Simulation of these macroscopic phenomena requires a multiscale approach to modeling helium transport in both space and time. We present here a multiscale helium transport model by coupling spatially-resolved kinetic rate theory (KRT) with kinetic Monte Carlo (KMC) simulation to model helium bubble nucleation and growth. The KRT-based HEROS Code establishes defect concentrations as well as stable helium bubble nuclei as a function of implantation parameters and position from the implanted surface and the KMC-based Mc-HEROS Code models the growth of helium bubbles due to migration and coalescence. Temperature- and stress-gradients can act as driving forces, resulting in biased bubble migration. The Mc-HEROS Code was modified to simulate the impact of stress gradients on bubble migration and coalescence. In this work, we report on bubble growth and gas release of helium implanted tungsten W/O stress gradients. First, surface pore densities and size distributions are compared with available experimental results for stress-free helium implantation conditions. Next, the impact of stress gradients on helium bubble evolution is simulated. The influence of stress fields on bubble and surface pore evolution are compared with stress-free simulations. It is shown that near surface stress gradients accelerate helium bubbles towards the free surface, but do not increasing average bubble diameters significantly.  相似文献   

15.
文丘里式气泡发生器气泡碎化特性研究   总被引:1,自引:1,他引:0  
熔盐堆在运行过程中须不断地去除氙等气体裂变产物。熔盐堆除气系统中气泡发生器的作用是通过向回路中注入一定量的直径为0.5 mm的小气泡,在扩散作用下吸收熔盐中的氙,最终气泡被分离出来,达到除氙的目的。在橡树岭国家实验室设计的基础上,本文为钍基熔盐研究堆设计气泡发生器,并在专门建造的水回路中对其工作特性进行了可视化研究。利用高速摄像系统跟踪气泡的运动和碎化过程,分析气液相流速对碎化后气泡尺寸的影响。结果表明:在实验条件下,当气体流量一定时,气泡尺寸随液体流量的增大而减小;当液体流量一定时,气泡尺寸随气体流量的增加而增大。  相似文献   

16.
以室温贮存经历的充氚不锈钢试样为研究对象,计算了充氚不锈钢中氚、氦浓度的深度分布,利用透射电镜观察了充氚不锈钢在加热过程中氦泡的演化行为。结果表明:在氚压0.131MPa、780℃充氚8h后,不锈钢中氚在深度方向分布均匀,平均浓度为110μL/L;在空气室温环境下放置6a后,不锈钢中氚衰变的氦浓度在深度方向分布均匀,平均浓度为60μL/L;对充氚不锈钢加热处理后,在550℃/1h时效即可观察到氦泡;在950℃/1h和1050℃/1h时效时,氦泡明显长大,大的可达100nm,小的可达30nm,在晶界、晶内和位错处均可见氦泡。  相似文献   

17.
Various types of nanometric defects such as voids and helium (He) bubbles produced by high-energy neutron irradiations are known to degrade the mechanical properties of irradiated materials. In this study, we have evaluated the obstacle strength of He bubbles to the mobility of an edge dislocation in α-iron for 2 and 4 nm bubbles with He-to-vacancy (He/V) ratios ranging from 0 to 1 at 300 and 500 K, by molecular dynamics simulation. Results showed that as the He/V ratio increases, the obstacle strength needed for the release of a dislocation from the bubble becomes stronger up to a moderate He/V ratio (0.6 and 0.4 for 2 and 4 nm bubbles, respectively, at both temperatures), and a further increase in the He/V ratio leads to weakening of the obstacle strength. For He/V = 1, the obstacle strengths are 10–30% weaker than those at moderate He/V ratios depending on the bubble size and temperature. The extent of obstacle strength was found to be correlated with the dilation caused by He bubbles depending on the bubble size, He/V ratio, and temperature.  相似文献   

18.
In order to investigate the synergistic effect of helium and hydrogen on swelling in reduced-activation ferritic/martensitic (RAFM) steel, specimens were separately irradiated by single He+ beam and sequential He+ and H+ beams at different temperatures from 250 to 650 °C. Transmission electron microscope observation showed that implantation of hydrogen into the specimens pre-irradiated by helium can result in obvious enhancement of bubble size and swelling rate which can be regarded as a consequence of hydrogen being trapped by helium bubbles. But when temperature increased, Ostwald ripening mechanism would become dominant, besides, too large a bubble could become mobile and swallow many tiny bubbles on their way moving, reducing bubble number density. And these effects were most remarkable at 450 °C which was the peak bubble swelling temperature for RAMF steel. When temperature was high enough, say above 450, point defects would become mobile and annihilate at dislocations or surface. As a consequence, helium could no longer effectively diffuse and clustering in materials and bubble formation was suppressed. When temperature was above 500, helium bubbles would become unstable and decompose or migrate out of surface. Finally no bubble was observed at 650 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号