首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为实现微小空间高效散热,本文以去离子水为工质,实验研究了工质流经高度和直径均为500μm的微圆柱组成的叉排微柱群通道时的饱和沸腾换热特性,并采用高速摄像机记录了通道内不同加热功率的气液两相流型,实验参数设定质量流速为341~598.3 kg/(m~2·s),热流密度为20~160 W/cm~2,蒸气干度为0~0.2。结果表明:随着热流密度增大,局部沸腾换热表面传热系数近似单调递减。在低干度区,局部沸腾换热表面传热系数随着质量流速的增加而增大,随着蒸气干度的增加而减小;受过冷沸腾气泡影响,工质进口温度越低,局部沸腾换热表面传热系数越大;随着热流密度增大,微柱群通道流动沸腾气泡流型依次为:泡状流、环状流,且泡状流区的局部沸腾换热表面传热系数明显高于环状流区。  相似文献   

2.
何宽  柳建华  余肖霄 《制冷学报》2019,40(5):118-123
本文对R290在5mm小管径内的流动沸腾换热特性进行实验研究,重点研究热流密度、质量流率及饱和温度对沸腾换热表面传热系数的影响。实验工况为:热流密度10~60 k W/m2、饱和温度15~25℃、质量流率50~200 kg/(m2·s)、干度0. 1~0. 9。结果表明:增加热流密度可实现强化换热,提高表面传热系数,使干涸现象提前发生,并加剧干涸;质量流率在低干度区间对表面传热系数的影响较小,在中干度和高干度区间表面传热系数与质量流率分别呈正相关;当热流密度较低时,在中干度区间,增大饱和温度会使表面传热系数降低;而在较高的热流密度下,增大饱和温度明显引起表面传热系数的上升。  相似文献   

3.
随着航空航天领域的发展采用沸腾换热的高效换热技术越来越受到关注,泡沫金属具有比表面积大、导热系数高的优 点,可以强化流动沸腾换热的效果。本文在实验工况为孔密度10-40PPI,干度0.1-0.9,质流密度90-180kg/(m2·s),热流密度12.4-18.6kW/m2的条件下,研究了表面润湿性为未改性和疏水改性的泡沫金属管内制冷剂流动沸腾换热的情况。结果表 明:40PPI泡沫金属管比10PPI泡沫金属管的沸腾换热表面传热系数最多增大了96%;随着干度.质流密度和热流密度的增大,泡沫金属管内流动沸腾换热表面传热系数最多分别增大74%,95%以及48%;疏水改性增加了泡沫表面的成核点数,与未改性相 比可以使传热系数增大10%-30%。  相似文献   

4.
本文对水平微细圆管内R290流动沸腾的流态进行了可视化研究,分析不同管径下流动沸腾换热主要流态形式及影响因素,基于理论流态图对比分析流态转变规律。实验工况:热流密度1~70 kW/m2,质量流率50~1 020 kg/(m2·s),饱和温度-10~25℃,管径1~3 mm,干度0~1。实验中共观察到8种R290微细通道内流动沸腾换热流态,其中间歇流和波状流为3 mm管的主要换热流态,弹状流和环状为1 mm管的主要换热流态;实测流态图中3 mm管的泡状流、混状流,2 mm管的泡状流,1 mm管的弹状流与D&W流态转变准则较为吻合,而2 mm管和1 mm管的离散流区域匹配性较差;管径的变化对流态有重要影响,随着管径的减小,气泡形状、流态形式、流态分布及流态转变曲线均发生变化,管径微尺度效应出现。  相似文献   

5.
本文对低压制冷剂R1233zd(E)在平行小通道内的流动沸腾换热过程进行了可视化实验研究,分析了制冷剂在平行通道内流型的演变与分布,在此基础上讨论了流型对换热特性的影响。结果表明:随热流密度的增加,在通道内观察到泡状流、段塞流、搅拌流和波形环状流;在较高的热流密度下,部分通道出现回流现象。此外,不同通道内流型的分布规律略有不同;通道中局部表面传热系数变化趋势随流型的演变可分为不同阶段,中部与出口处的局部表面传热系数呈现不同的变化趋势;当干度小于0.1时,表面传热系数几乎不受质量通量的影响;随着干度增加,表面传热系数与质量通量呈正相关。  相似文献   

6.
针对芯片级散热场景,设计并搭建了两相环路热虹吸实验系统(TPLT),以R245fa作为工质,在冷凝器入口冷水温度为35℃、热流密度为10—162 W/cm2的工况下,研究了充液率对系统运行特性的影响,以及沟槽宽度为0.2—1.2 mm的连通平行微小通道(IPM)与平行微小通道(PPM)的沸腾换热性能。结果表明:40%是系统的合适充液率,过高的充液率导致冷凝器内部积液产生额外的蒸发器入口过冷度,过低的充液率则无法提供足够的循环流量;由于蒸发器水平放置时,TPLT系统流量启动存在滞后性,其瞬态启动特性会影响微小通道的稳态换热性能;0.2 mm槽宽的连通微小通道(IPM02,命名方式下同)具有较好的核态沸腾换热性能,因此启动阶段不存在温度过冲;最高测试热流密度下,IPM02和IPM07的传热系数相比于PPM分别提升约11%和5.7%,IPM12的传热系数则反而低于PPM。  相似文献   

7.
建立单面加热垂直矩形窄通道流动沸腾换热实验装置,针对截面250 mm×3.5 mm的窄缝通道,对水流动沸腾换热特性进行实验研究。通过实验分析可知:(1)饱和沸腾起始点是核态沸腾的开始,以此为分界,窄通道内的换热特性截然不同。影响沸腾起始点的因素主要有3种:热流密度、质量流量及入口温度。(2)流体从单相流、过冷沸腾和饱和沸腾转变,其壁面温度变化也各不相同。流体处于单相流时,壁面温度沿流动方向呈线性增加;流体处于过冷沸腾阶段时,过冷沸腾对壁面温度的影响不大,壁面温差很小,可近似认为此阶段为等壁温换热过程。流体进入饱和沸腾(饱和核态沸腾和流动沸腾),壁温存在最大值。  相似文献   

8.
氨制冷剂存在可燃性和毒性,因此减少其在制冷系统中的充注量极为重要。小管径换热管通常可以提供更高的表面传热系数,这可以作为提升换热器紧凑性同时减少系统中充注量的有效方法。本文搭建了氨制冷剂管内流动沸腾换热及压降测试实验装置,测试了氨制冷剂在4 mm水平光管内的流动沸腾换热及压降,并分析了干度、质量流速及热流密度对换热及压降特性的影响。结果表明:流动沸腾换热表面传热系数随着干度的增加而增大,同时质量流速和热流密度越高,流动沸腾换热表面传热系数越大。此外,氨制冷剂在管内的两相摩擦压降也随着干度的增加而增大,在固定干度下,质量流速的升高导致压降增大。  相似文献   

9.
王皓宇  柳建华  张良  余肖霄 《制冷学报》2020,41(3):78-82+90
本文研究了R290在内径为1 mm、2 mm和4 mm水平微细圆管内的沸腾流动换热特性,在饱和温度为15℃条件下,质量流速为50~600 kg/(m~2·s)、干度为0~1、热流密度为5~20 k W/m~2时,对沸腾传热系数的影响进行了分析。通过实验发现,增大质量流速对传热系数具有增强作用,质量流速对传热系数的影响在低干度区域比高干度区域小。在热流密度方面,传热系数随着热流密度的增大而增大,且在1 mm和2 mm管内观察到了临界干度对传热系数的影响,这时传热系数有断崖式下降的趋势。在管径对于传热系数的影响方面,通过对不同管径换热特性的横向对比,发现在一定工况下传热系数随着管径的减小有所上升。此外本文还对R290已有的部分关联式进行了适配性验证。  相似文献   

10.
为探究热流密度、质量通量和入口过冷度对微细通道流动沸腾压降波动特性的影响,以质量分数为0.8%的纳米制冷剂Al_2O_3-R141b及纯制冷剂R141b为工质在水力直径为1.33 mm的矩形微细通道内进行了流动沸腾实验。结果表明:热流密度从18.2 k W/m2增加到25.4 k W/m~2时,工质进出口压降波动更为剧烈;较大质量通量和较高入口过冷度一定程度上可以使压降波动更平缓;与纯制冷剂相比,质量分数为0.8%的纳米制冷剂Al_2O_3-R141b的压降波动较为平缓,其压降标准差最大降低了18%。  相似文献   

11.
为了探究微通道内流动沸腾及传热现象的机理,以制冷剂R22为工质在矩形微通道内进行了流动沸腾及可视化实验。结果表明,在核态沸腾下传热系数受质量流率的影响较小,却随着热流密度的增加而快速增加;微通道的尺寸越小,传热效果越好,水力直径为0.92 mm和1.33 mm微通道内的传热系数比2 mm微通道内的传热系数分别提高约25%、12%;根据实验值与预测值的对比情况,在Oh H K等[15]和Yun R等[7]模型基础上拟合得到新的传热系数预测关联式,平均绝对误差降至8.8%;通过可视化实验发现,在临界热流密度下微通道内出现波浪式气体层的现象。  相似文献   

12.
针对CO2作为制冷剂在微细通道内流动沸腾换热进行了实验与理论研究,采用红外成像观测与换热系数实验研究定量与定性的分析了热流密度:2~35 kW/m2,饱和温度:﹣10 ℃ ~15 ℃工况时,内径为1 mm、2 mm圆管内的换热系数。实验结果表明:热流密度的增加强化了微细通道内工质核态沸腾换热,使换热系数得到显著提高;换热系数随饱和温度非单调变化,饱和温度较高时,越接近CO2临界温度其换热系数随饱和温度升高而增加,当饱和温度在低温工况时换热系数则随其降低而增加,换热过程中发生干涸干度随饱和温度升高而单调降低。  相似文献   

13.
在液氮自然循环流动时,对竖直多孔表面管管内沸腾换热及外管单面加热时竖直多孔表面套管内沸腾换热,进行了实验研究,分析并讨论了通道的当量半径、热流密度及含气率对沸腾换热的影响。  相似文献   

14.
轴向旋转热管砂轮是用于强化磨削弧区换热的新型砂轮,其冷凝器换热性能的优劣直接影响整个热管砂轮的换热性能。本文结合冷凝器设计方法设计了热管砂轮冷凝器,并借助数值模拟的方法对轴向旋转热管砂轮冷凝器的换热性能进行分析,以优化旋转热管砂轮冷凝器的结构参数。研究不同的翅片高度(f=0~8 mm)、喷嘴到翅片顶部距离(d=3~11 mm)、低温空气射流速度(vj=45~115 m/s)和砂轮转速(n=150~1 180 r/min)等对冷凝器换热性能的影响,结果表明:当翅片高度为6 mm时,获得最佳传热性能,对流换热表面传热系数约为459 W/(m2·K),与无翅片结构相比,对流换热表面传热系数提高36%;当喷嘴到翅片顶部距离为5 mm时,换热性能最好,传热系数为459 W/(m2·K);当低温空气射流速度提高时,对流换热表面传热系数随之提高,射流速度为115 m/s时对流换热表面传热系数最高,可达459 W/(m2·K),与射流速度为45 m/s时相比提高43%;当砂轮转速提高,对流换热表面传热系数也随之升高...  相似文献   

15.
为研究流体物性、流动和换热过程的状态参量对微通道内沸腾换热特性的影响规律,本文采用去离子水和无水乙醇在当量直径为0.293 mm的矩形微通道进行了不同质量流量和热流密度条件下的沸腾换热实验研究,通过对实验数据的计算和处理,分析总结了流体的热物性、质量流量、热流密度、干度和Bo数等参量对沸腾换热系数的影响规律。结果表明:沸腾换热系数随着热流密度、干度和Bo数的增大而降低,核态沸腾占主导地位;相同的质量流量和热流密度条件下,去离子水的沸腾换热系数明显高于无水乙醇的沸腾换热系数,并且前者的换热系数随质量流量的增大而增大,而后者变化不明显。根据考虑了通道尺寸效应及流体物性参量总结出的换热系数关联式进行了计算,计算结果对去离子水和无水乙醇的平均绝对误差分别为14.2%和16.6%,可认为该关联式适用于微通道内沸腾换热系数的预测。  相似文献   

16.
为了了解矩形窄通道内流动沸腾及传热现象的机理,建立了单面加热竖直矩形窄通道可视化流动沸腾换热实验台进行了实验。实验结果表明:矩形窄通道流动沸腾过程的换热系数存在最大值;随着干度的增加(即热流密度的增加)其换热系数逐渐降低,转为以液膜蒸发为主的流动沸腾换热,此时需控制热流密度,避免干涸现象的发生。  相似文献   

17.
作为两相冷却技术的核心部件,直冷板的传热特性越来越受到关注。本文基于泵循环两相流实验系统,设计了一块平行 小通道直冷板,直冷板流道区域尺寸为140mm×50mm,包含21根通道,通道截面尺寸为1.5mm×15mm,通道间由0.5mm厚的肋片分隔。通过改变制冷剂进口温度,流量以及热流密度,分析平行小通道直冷板流道内部不同区域壁面温度及表面传热系数的变 化规律。结果表明,制冷剂热流密度0.5 W/cm2、进口温度15℃.质量流量150kg/h时,不同流道内壁面温度均沿流动方向呈单调 上升趋势;当制冷剂热流密度升至6W/cm2,壁面温度先升高后趋于稳定,中间流道的壁面温度均高于周边流道。在低热流密度 下,直冷板流道内部不同位置的表面传热系数沿流动方向基本不变;而在高热流密度下,流道出口处的表面传热系数呈现上升的趋 势,最大增幅为21%。与壁面温度相似,周边流道的表面传热系数高于中间流道,表面传热系数相差7%-24%。  相似文献   

18.
设计了阵列式微通道热沉结构,进行了并R134a的沸腾流动换热实验。结果证明,在低干度区域由泡状流/弹状流/半环状流主导,主导换热机理为对流沸腾和蒸发,热交换系数随热流密度显著增加,随质量流量增大而略有增加。在高干度区域搅拌流/束状流主导沸腾流动,对流蒸发为主导换热机理,换热系数随流量增大而增大。该结构可以在低流量下提前紊流转捩;有效抑制压力波动,减小进出口压力差。实验观察发现搅拌流/束状流型,气液界面波失稳导致液膜破碎和卷携。液滴沉积会润湿局部蒸干壁面。当热流持续增大,液膜破碎并大量被卷携入气核后,壁面附着气膜且无法被润湿,形成反束状流型时,触发CHF。  相似文献   

19.
本文以去离子水为工质,实验研究了竖直矩形窄通道内少量残余不凝性气体对蒸汽凝结换热特性的影响。采用热阻分离法得到凝结侧换热表面传热系数,分析了不凝性气体的含量、冷却水质量流速、进口温度和热流密度对蒸汽凝结侧表面传热系数的影响。结果表明:当热流密度为1.668 kW/m~2,即蒸汽质量流速较小时,2%体积分数的不凝性气体使凝结侧表面传热系数下降了33%,但当热流密度为3.887 kW/m~2,蒸汽质量流速较大时,2%体积分数的不凝性气体仅使凝结侧表面传热系数降低了14%,此外,凝结换热表面传热系数随冷水质量流速和不凝性气体分数的增加而变小,随冷水进口温度和热流密度的增加而变大。  相似文献   

20.
为了研究重力场对流动沸腾临界热流密度的影响,搭建了两相沸腾换热实验系统。以蒸馏水为工质,采用单侧加热的窄缝通道,通过改变质量流速、入口过冷度和重力场与加热方位的夹角,考察不同加热方位临界热流密度特性和实验段流阻特性。分析了质量流速、入口过冷度、加热方位对流动沸腾临界热流密度的影响,并将实验数据与Ivey-Morris模型、Sudo模型和Wojtan模型的计算值进行了验证对比。结果表明:加热面呈0°放置时的临界热流密度最大,呈180°放置时最小,质量流速和入口过冷度的增大会加大临界热流密度。Sudo模型对本实验条件不适用;Ivey-Morris模型和Wojtan模型在加热面呈0°放置时与实验值符合情况良好,相对误差约在30%以内,其他加热方位时,计算值均大于实验值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号