首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
文主要是研究温轧对双辊铸轧6061铝合金板材进行处理,观察不同温轧温度及累积压下量对铸轧板材的影响。采用光学显微镜(OM),扫描电镜(SEM),X射线衍射仪(XRD),显微硬度仪和万能拉伸机等设备,观察了铸轧板材及温轧板材的显微组织,获得了材料的硬度、强度和延伸率等力学性能。研究表明,铸轧6061合金中主要含有耐热相Al0.7Fe3Si0.3、Al9Fe0.84Mn2.16Si及少量强化相Mg2Si。合金中第二相随温轧道次的递增逐渐由网格状、片状转变为沿轧制方向的线条状,最终变为细小的颗粒状。经过温轧后,产生新的析出相Al0.5Fe3Si0.5且Mg2Si析出相增多。铸轧板材温轧后,硬度随压下量的增大呈线性递增,且当温轧温度为370℃时,硬度曲线斜率最大为2.42114。此时细小的AlFeSi类析出相及Mg2Si强化相均匀弥散分布于合金中,板材的硬度最大,可达84.28 HV,抗拉强度、屈服强度和延伸率分别为209.34 MPa、79.09 MPa和20.11%。  相似文献   

2.
铝作为变形镁合金中的强化元素,通常其含量小于9%。对高铝镁合金的成形性进行了探索,采用铸轧—温轧工艺制备了含Al量为11%的镁合金薄板,研究了不同累积变形量和退火工艺对显微组织与力学性能的影响规律。结果表明,采用铸轧—温轧工艺可制备出0.35 mm厚、含铝11%的镁合金薄板。轧制温度在240~300℃时,铸轧板单道次最大压下率5%,累积总变形量可达90%。通过对比不同退火条件下的显微组织与力学性能,确定温轧后板材的退火工艺为400℃×0.5 h。轧制退火后板材的抗拉强度为331 MPa,伸长率为6%。  相似文献   

3.
研究了添加Mn对双辊铸轧6061铝合金铸轧板中富铁相转变及力学性能的影响。结合热力学模拟、金相显微镜(OM)、扫描电子显微镜(SEM)及透射电子显微镜(TEM)等手段分析6061铸轧板中富铁相转变及力学性能变化规律;利用室温拉伸试验机测试铸轧板力学性能。结果表明:当ω(Mn)=0.36%(质量分数)时6061铸轧板中富铁相完全由针状β-Al_5FeSi相转变为颗粒状α-Al_(12)(FeMn)_3Si相,当ω(Mn)=0.54%时板材内部出现大量无规则块状与花瓣状α-Al_(15)(FeMn)_3Si_2相聚集,从而显著改善了铸轧板中富铁相形貌;当ω(Mn)=0.36%时,6061铸轧板力学性能最佳,此时抗拉强度、屈服强度和伸长率分别为195.93 MPa、170.36 MPa和17.96%。  相似文献   

4.
本文研究了添加Mn对双辊铸轧6061铝合金铸轧板中富铁相转变及力学性能的影响。结合热力学模拟、金相显微镜(OM)、扫描电子显微镜(SEM)及透射电子显微镜(TEM)等手段分析6061铸轧板中富铁相转变及力学性能变化规律;利用室温拉伸实验机测试铸轧板力学性能。结果表明:当ω(Mn)=0.36 wt.%时6061铸轧板中富铁相完全由针状β-Al5FeSi相转变为颗粒状α-Al12(FeMn)3Si相,当ω(Mn)=0.54 wt.%时板材内部出现大量无规则块状与花瓣状α-Al15(FeMn)3Si2相聚集,从而显著改善了铸轧板中富铁相形貌;当ω(Mn)=0.36 wt.%时,6061铸轧板力学性能最佳,此时抗拉强度、屈服强度和伸长率分别为195.93 MPa、170.36 MPa和17.96%。  相似文献   

5.
采用金相(OM)、扫描电镜(SEM)、能谱(EDS)和透射电镜(TEM),研究6061铝合金中富铁相在均匀化过程中的转变和析出行为.结果表明:Mn元素直接参与6061铝合金中富铁相的相变过程,使富铁相由板条状的β-AlFeSi相转变成颗粒状的α-Al(FeMn)Si相,在560℃未发现明显的β-Al5FeSi→α-Al8Fe2Si的相变过程;在均匀化过程中,析出块状Al8Fe2Si相和颗粒状Al167.8Fe44.9Si23.9相,其中,Al167.8Fe44.9Si23.9相的析出速度受β-Al5FeSi→α-Al8Fe2Si的相变过程影响.  相似文献   

6.
本文在理论分析与模拟计算的基础上,通过热轧制备了6061 Al/AZ31B Mg/6061Al对称复合板,并对其组织结构和力学性能进行了研究。首先通过经典复合板理论计算得到了复合板中6061Al的最佳包覆率,再通过有限元方法模拟得到了复合板的最佳压下率。依据理论分析和仿真计算得到的铝的最佳包覆率和复合板的最佳压下率,对6061 Al/AZ31B Mg/6061Al复合板进行组坯,并在不同轧制温度、不同压下率和不同退火时间下进行了轧制实验,最后对实验得到的复合板进行了微观组织、拉伸性能和能谱分析。结果表明,在复合板的复合界面处的镁层中发现了再结晶晶粒,且界面上形成了由Mg17Al12和Mg2Al3组成的金属间化合物;随着轧制压下率的增大,6061 Al/AZ31B Mg/6061Al复合板的拉伸强度、延伸率和界面扩散厚度显著增大;随着轧制温度的升高,复合板的拉伸强度、延伸率和界面扩散厚度也增大;而随着退火时间的增加,复合板的拉伸强度降低,但界面扩散厚度增加。  相似文献   

7.
在理论分析与模拟计算的基础上,通过热轧制备了6061 Al/AZ31B Mg/6061 Al对称复合板,并对其组织结构和力学性能进行了研究。首先通过经典复合板理论计算得到了复合板中6061 Al的最佳包覆率,再通过有限元方法模拟得到了复合板的最佳压下率。依据理论分析和仿真计算得到了铝的最佳包覆率和复合板的最佳压下率,对6061 Al/AZ31B Mg/6061 Al复合板进行组坯,并在不同轧制温度、不同压下率和不同退火时间下进行了轧制实验,最后对实验得到的复合板进行了拉伸性能测试、微观组织和能谱分析。结果表明,在复合板的复合界面处的镁层中发现了再结晶晶粒,且界面上形成了由Mg_(17)Al_(12)和Mg_2Al_3组成的金属间化合物;随着轧制压下率的增大,6061 Al/AZ31B Mg/6061Al复合板的抗拉伸强度、延伸率和界面扩散厚度显著增大;随着轧制温度的升高,复合板的抗拉伸强度、延伸率和界面扩散厚度也增大;而随着退火时间的增加,复合板的抗拉伸强度降低,但界面扩散厚度增加。  相似文献   

8.
在温度范围为300~450℃,压下率为20%~40%,轧制速度为0.1~0.8 m/s工艺条件下对宽幅AZ31B铸轧镁合金进行了多组温轧试验,而后对轧后的镁板分别进行室温拉伸,并用光学显微镜观察各条件轧制后的组织形态,用SEM观察拉伸试样断口形貌,同时进行往复摩擦实验。研究表明:轧制温度为350℃,轧制速度为0.1 m/s,压下率为30%时可以获得很好的断裂强度,在此温轧条件下镁合金板材的耐磨损系数增加了80%;温度为450℃,轧制速度为0.8 m/s,压下率为40%时可以获得很好的塑性变形能力;压下率超过30%之后,晶界处容易产生位错塞积,导致累积变形量增加及内应力激增,是镁合金边部产生微裂纹进而形成断裂失效的主要原因。  相似文献   

9.
采用高转速微型搅拌摩擦焊接工艺实现了0.8 mm厚6061-T6铝合金薄板对接。利用OM、SEM、TEM及EBSD等测试技术探讨了高转速对接头微观组织及力学性能的影响规律。结果表明,高转速焊接6061-T6薄板时,焊缝表面成型良好,焊缝各区域组织呈连续均匀过渡。与常规搅拌摩擦焊相比,高转速工艺下,焊缝区b-Mg2Si、S相(Al2Cu Mg)和Al8Fe2Si析出相数量增多,特别是长条状b-Mg_2Si数量增多,焊缝区显微硬度值明显提升;转速8000 r/min、焊速1500 mm/min条件下,接头最大抗拉强度高达301.8 MPa,是母材抗拉强度(351.7 MPa)的85.8%;转速对6061-T6铝合金超薄板高转速搅拌摩擦焊对接接头抗拉强度影响较小,接头断裂模式为脆性断裂为主的韧-脆混合断裂。  相似文献   

10.
选用铝合金进行连续铸轧实验,重点分析铸轧温度和铸轧压下率对铝合金板残余应力的影响。通过实验可知,无论是横向残余应力还是纵向残余应力,在连续铸轧过程中,都会随着铸轧压下率的增加而增大;当铸轧压下率是小于15%的低压下率状况时,残余应力受铸轧温度的影响幅度不大;随着铸轧压下率的提高,铸轧起始温度过高或过低都可以降低铝合金板的残余应力;但铸轧起始温度过高有可能出现轧卡现象,温度过低则有可能出现粘辊现象,因此,在大铸轧压下率时,应在避免产生轧卡和粘辊现象的前提下选择较低或较高的铸轧起始温度。  相似文献   

11.
Sheet material of the Al‐Mg‐Si alloy 6061 in the tempers T4 and T6 was thermally exposed at temperatures ranging from 85 to 120°C for 1000 h. The microstructure, tensile properties and the corrosion behaviour in the different heat treatment conditions were investigated using differential scanning calorimetry and transmission electron microscopy as well as performing tensile tests and various corrosion tests. The additional heat treatments, which should simulate aging during long‐term service usage, caused an increase in strength of 6061‐T4 sheet, associated with changes in the naturally aged microstructure. Thermal exposure at 120°C for 1000 h resulted in tensile and corrosion properties being similar to those obtained for peak‐aged sheet. Alloy 6061 in the T6 temper exhibited microstructural stability when additionally heat treated at 85 and 120°C for 1000 h. No significant alterations in the microstructure, tensile properties, and corrosion performance were observed after exposure to slightly elevated temperatures.  相似文献   

12.
利用双电偶热分析和约束杆模具热裂评价法,研究了Fe和Cu杂质元素对6061再生铝合金凝固特性和热裂倾向(HTS)的影响。结果表明,随着Fe和Cu元素含量的增加,再生铝合金的热裂倾向逐渐增大。Fe元素主要影响再生铝合金初期凝固行为,提高Al13Fe4富铁相的形核温度和含量,促使凝固过程中枝晶搭接完成,阻碍液相流动补缩。Cu元素主要影响再生铝合金末期凝固行为,低熔点Al5Cu2Mg8Si6相显著降低脆性温度区间的下限,并降低固相线附近糊状区强度,导致热裂性能恶化。  相似文献   

13.
用OM,SEM,TEM和电子万能试验机对不同方法制备的ZK60镁合金薄带的组织和力学性能进行了研究.常规铸造ZK60镁合金轧制后仍为等轴晶组织,晶粒尺寸明显细化,双辊铸轧ZK60镁合金条带温轧变形后,显微组织由树枝晶转变为纤维状变形组织,且有高密度剪切带产生,温轧过程中没有明显的动态再结晶发生.轧制后两种合金均具有良好的力学性能,轧制态铸轧合金的强度明显高于传统铸造合金,伸长率略低于传统铸造合金.退火热处理后两种合金均发生了再结晶,得到等轴晶组织,且铸轧合金的组织比传统铸造合金的组织更加均匀细小.退火热处理使薄带的强度略有下降,而伸长率大幅度提高,退火后双辊铸轧合金和传统铸造合金的抗拉强度、屈服强度和延伸率分别为:388 MPa,301 MPa,22.9%和311MPa,219 MPa,19.3%.镁合金薄带制备过程的晶粒细化归因于剪切带、位错和挛晶的产生及后续退火过程中再结晶.  相似文献   

14.
用OM, SEM, TEM和电子万能试验机对不同方法制备的ZK60镁合金薄带的组织和力学性能进行了研究。常规铸造ZK60镁合金轧制后仍为等轴晶组织,晶粒尺寸明显细化,双辊铸轧ZK60镁合金条带温轧变形后,显微组织由树枝晶转变为纤维状变形组织,且有高密度剪切带产生,温轧过程中没有明显的动态再结晶发生。轧制后两种合金均具有良好的力学性能,轧制态铸轧合金的强度明显高于传统铸造合金,伸长率略低于传统铸造合金。退火热处理后两种合金均发生了再结晶,得到等轴晶组织,且铸轧合金的组织比传统铸造合金的组织更加均匀细小。退火热处理使薄带的强度略有下降,而伸长率大幅度提高,退火后双辊铸轧合金和传统铸造合金的抗拉强度、屈服强度和延伸率分别为:388 MPa,301 MPa,22.9%和311 MPa,219 MPa,19.3%。镁合金薄带制备过程的晶粒细化归因于剪切带、位错和挛晶的产生及后续退火过程中再结晶。  相似文献   

15.
葛佳棋  蒋勇  王克鸿 《焊接学报》2012,33(7):97-100
采用包覆钎料感应加热方法,以AlSi钎料作为焊缝填充金属,对Q235钢螺柱和6061铝合金进行钎焊.利用光学显微镜、扫描电镜、能谱分析等表征方法,对接头的组织、成分和相组成等进行了分析.结果表明,AlSi钎料与铝母材反应充分,Si元素扩散至铝母材形成针叶状的共晶组织,焊缝近钢侧生成一条狭窄连续的Fe-Al金属间化合物,并沿垂直于铝基体的方向生成出胞状晶,金属间化合物层由Fe2Al5和FeAl3的混合相组织组成.力学性能测试表明,接头的抗剪强度最大为65 MPa,近钢侧金属间化合物的显微硬度值较高,接头断裂在金属间化合物区域,属于延性断裂.  相似文献   

16.
在实验室中制备了试验用7B04铝合金,经铸造-均质化退火-热轧-中间退火-冷轧后制得7B04铝合金板材,并对合金板材进行了后续固溶时效处理,研究了固溶处理对其组织和性能的影响。结果表明,470 ℃×1 h固溶+120 ℃×21 h时效处理铝合金冷轧板材再结晶明显,有少量晶粒处于伸长状态,除粗大第二相粒子外,未发现细小第二相粒子,综合力学性能较好,抗拉强度为596 MPa,屈服强度为537 MPa,伸长率为14.88%。固溶温度达到480 ℃时,合金再结晶明显,但保温时间不能超过0.5 h,否则合金强度和塑性下降。  相似文献   

17.
王宪芬  刘相法  丁海民 《铸造》2008,57(2):126-129
采用高倍视频金相显徽镜(HRVM)和电子探针(EPMA)微区分析技术,观察了高性能Al-Si-Cu-Ni-Mg活塞合金的显微组织形貌,确认了合金中存在的构成相Mg2Si、Al3Ni、W相以及(CuNi)2Al3相。着重观察分析W相和Mg2SiN在热处理过程中的形态演变,发现多元共晶体中的W相固溶后由无序网格状呈现出典型的骨架状或者密堆状,Mg2Si相固溶处理后主要以固溶强化相融入到基体中。  相似文献   

18.
通过室温拉伸试验研究了电解铝液制备的7005合金铸态力学性能,并采用光学显微镜观察、扫描电镜观察及能谱分析等手段对拉伸断口及其纵截面的组织形貌进行分析.结果表明,电解铝液中的Fe、Si、H2、Al2O3夹杂对7005合金铸态力学性能有显著影响.铝电解过程中生成的H2和Al2O3夹杂,是铸锭中形成疏松、夹杂的原因.电解铝液中的Fe、Si杂质元素与合金中的Mn、Mg等元素作用形成硬脆、粗大的AlFeMnSi、Mg2Si等第二相,分布于晶内以及晶界处.试样的断裂主要是由夹杂物、疏松孔洞及AlFeMnSi脆性相等裂纹源的综合作用而引起的,拉伸断裂的模式为穿晶方式的韧窝-准解理混合型断裂.  相似文献   

19.
对1.8 mm厚AZ91镁合金和1.2 mm厚6016铝合金平板试件进行激光搭接焊试验,利用体视显微镜、卧式金相显微镜、扫描电镜、X射线衍射仪、电子显微硬度仪、微机控制电子万能试验机等手段研究镁/铝焊缝的表面成形性、接头区域的金相组织、界面元素分布、断口形貌、主要物相、显微硬度与接头力学性能。结果表明:激光功率1900 W,焊接速度50 mm/s,离焦量f为0,Ar气保护气体流量为15 L/min时,焊缝表面成形性良好,热影响区窄,晶粒细化;焊接接头平均抗拉强度和抗剪强度分别为13.99和12.79 MPa,镁侧和铝侧焊缝硬度均高于母材;剪切断口较平坦、光滑,出现相互平行的疲劳条纹;拉伸断口存在较多高度不一致的解理台阶,呈脆性断裂特征;镁/铝焊缝界面存在Mg17Al12、Mg2Al3主要物相,其中Mg17Al12脆性相高温下比Mg2Al3延性相结构稳定,是镁/铝焊接接头呈现脆性特征和较难实现焊接的主要原因。  相似文献   

20.
The microstructure and overheating characteristics of the direct chill semicontinuous casting ingot of 7B04 high strength aluminum alloy, and those after industrial homogenization treatment and multi-stage homogenization treatments, were studied by differential scanning calorimetry(DSC), optical microscopy(OM) and scanning electron microscopy with energy dispersive X-ray spectroscopy(SEM-EDX). The results show that the microstructure of direct chill semicontinuous casting ingot of the 7B04 alloy contains a large number of constituents in the form of dendritic networks that consist of nonequilibrium eutectic and Fe-containing phases. The nonequilibrium eutectic contains Al, Zn, Mg and Cu, and the Fe-containing phases include two kinds of phases, one containing Al, Fe, Mn and Cu, and the other having Al, Fe, Mn, Cr, Si and Cu. The melting point of the nonequilibrium eutectic is 478 ℃ for the casting ingot of the 7B04 alloy which is usually considered as its overheating temperature. During industrial homogenization treatment processing at 470 ℃, the nonequilibrium eutectic dissolves into the matrix of this alloy partly, and the remainder transforms into Al2CuMg phase that cannot be dissolved into the matrix at that temperature completely. The melting point of the Al2CuMg phase which can dissolve into the matrix completely by slow heating is about 490 ℃. The overheating temperature of this high strength aluminum alloy can rise to 500-520 ℃. By means of special multi-stage homogenization, the temperature of the homogenization treatment of the ingot of the 7B04 high strength aluminum alloy can reach 500 ℃ without overheating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号