首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article we develop quantum algorithms for learning and testing juntas, i.e. Boolean functions which depend only on an unknown set of k out of n input variables. Our aim is to develop efficient algorithms: (1) whose sample complexity has no dependence on n, the dimension of the domain the Boolean functions are defined over; (2) with no access to any classical or quantum membership (“black-box”) queries. Instead, our algorithms use only classical examples generated uniformly at random and fixed quantum superpositions of such classical examples; (3) which require only a few quantum examples but possibly many classical random examples (which are considered quite “cheap” relative to quantum examples). Our quantum algorithms are based on a subroutine FS which enables sampling according to the Fourier spectrum of f; the FS subroutine was used in earlier work of Bshouty and Jackson on quantum learning. Our results are as follows: (1) We give an algorithm for testing k-juntas to accuracy ε that uses O(k/ϵ) quantum examples. This improves on the number of examples used by the best known classical algorithm. (2) We establish the following lower bound: any FS-based k-junta testing algorithm requires queries. (3) We give an algorithm for learning k-juntas to accuracy ϵ that uses O−1 k log k) quantum examples and O(2 k log(1/ϵ)) random examples. We show that this learning algorithm is close to optimal by giving a related lower bound. Supported in part by NSF award CCF-0347282, by NSF award CCF-0523664, and by a Sloan Foundation Fellowship.  相似文献   

2.
We prove that P = NP follows if for some , the class of functions that are computable in polynomial time by nonadaptively accessing an oracle in NP is effectively included in PFNP[k⌈log n⌉— 1], the class of functions that are computable in polynomial k⌈log n⌉— 1 queries to an oracle in NP.?We draw several observations and relationships between the following two properties of a complexity class : whether there exists a truthtable hard p-selective language for , and whether polynomially-many nonadaptive queries to can be answered by making O(log n)-many adaptive queries to (in symbols, whether ). Among these, we show that if there exists an NP-hard p-selective set under truth-table reductions, then . However, if , then these two properties are equivalent. Received: November 1, 1996.  相似文献   

3.
In this paper, we study the sample complexity of weak learning. That is, we ask how many data must be collected from an unknown distribution in order to extract a small but significant advantage in prediction. We show that it is important to distinguish between those learning algorithms that output deterministic hypotheses and those that output randomized hypotheses. We prove that in the weak learning model, any algorithm using deterministic hypotheses to weakly learn a class of Vapnik-Chervonenkis dimension d(n) requires Ω ([formula]) examples. In contrast, when randomized hypotheses are allowed, we show that Θ (1) examples suffice in some cases. We then show that there exists an efficient algorithm using deterministic hypotheses that weakly learns against any distribution on a set of size d(n) with only O(d(n)2/3) examples. Thus for the class of symmetric Boolean functions over n variables, where the strong learning sample complexity is Θ (n), the sample complexity for weak learning using deterministic hypotheses is Ω ([formula]) and O(n2/3), and the sample complexity for weak learning using randomized hypotheses is Θ (1). Next we prove the existence of classes for which the distribution-free sample size required to obtain a slight advantage in prediction over random guessing is essentially equal to that required to obtain arbitrary accuracy. Finally, for a class of small circuits, namely all parity functions of subsets of n Boolean variables, we prove a weak learning sample complexity of Θ(n). This bound holds even if the weak learning algorithm is allowed to replace random sampling with membership queries, and the target distribution is uniform on {0, 1}n.  相似文献   

4.
We consider the problem of learning an acyclic discrete circuit with n wires, fan-in bounded by k and alphabet size s using value injection queries. For the class of transitively reduced circuits, we develop the Distinguishing Paths Algorithm, that learns such a circuit using (ns) O(k) value injection queries and time polynomial in the number of queries. We describe a generalization of the algorithm to the class of circuits with shortcut width bounded by b that uses (ns) O(k+b) value injection queries. Both algorithms use value injection queries that fix only O(kd) wires, where d is the depth of the target circuit. We give a reduction showing that without such restrictions on the topology of the circuit, the learning problem may be computationally intractable when s=n Θ(1), even for circuits of depth O(log?n). We then apply our large-alphabet learning algorithms to the problem of approximate learning of analog circuits whose gate functions satisfy a Lipschitz condition. Finally, we consider models in which behavioral equivalence queries are also available, and extend and improve the learning algorithms of (Angluin in Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, pp. 584–593, 2006) to handle general classes of gate functions that are polynomial time learnable from counterexamples.  相似文献   

5.
Combinatorial property testing deals with the following relaxation of decision problems: Given a fixed property and an input x, one wants to decide whether x satisfies the property or is “far” from satisfying it. The main focus of property testing is in identifying large families of properties that can be tested with a certain number of queries to the input. In this paper we study the relation between the space complexity of a language and its query complexity. Our main result is that for any space complexity s(n) ≤ log n there is a language with space complexity O(s(n)) and query complexity 2Ω(s(n)). Our result has implications with respect to testing languages accepted by certain restricted machines. Alon et al. [FOCS 1999] have shown that any regular language is testable with a constant number of queries. It is well known that any language in space o(log log n) is regular, thus implying that such languages can be so tested. It was previously known that there are languages in space O(log n) that are not testable with a constant number of queries and Newman [FOCS 2000] raised the question of closing the exponential gap between these two results. A special case of our main result resolves this problem as it implies that there is a language in space O(log log n) that is not testable with a constant number of queries. It was also previously known that the class of testable properties cannot be extended to all context-free languages. We further show that one cannot even extend the family of testable languages to the class of languages accepted by single counter machines.   相似文献   

6.
Karchmer, Raz, and Wigderson (1995) discuss the circuit depth complexity of n-bit Boolean functions constructed by composing up to d = log n/log log n levels of k = log n-bit Boolean functions. Any such function is in AC1 . They conjecture that circuit depth is additive under composition, which would imply that any (bounded fan-in) circuit for this problem requires depth. This would separate AC1 from NC1. They recommend using the communication game characterization of circuit depth. In order to develop techniques for using communication complexity to prove circuit depth lower bounds, they suggest an intermediate communication complexity problem which they call the Universal Composition Relation. We give an almost optimal lower bound of dkO(d 2(k log k)1/2) for this problem. In addition, we present a proof, directly in terms of communication complexity, that there is a function on k bits requiring circuit depth. Although this fact can be easily established using a counting argument, we hope that the ideas in our proof will be incorporated more easily into subsequent arguments which use communication complexity to prove circuit depth bounds. Received: July 30, 1999.  相似文献   

7.
We prove new lower bounds for learning intersections of halfspaces, one of the most important concept classes in computational learning theory. Our main result is that any statistical-query algorithm for learning the intersection of $\sqrt{n}$ halfspaces in n dimensions must make $2^{\varOmega (\sqrt{n})}$ queries. This is the first non-trivial lower bound on the statistical query dimension for this concept class (the previous best lower bound was n Ω(log?n)). Our lower bound holds even for intersections of low-weight halfspaces. In the latter case, it is nearly tight. We also show that the intersection of two majorities (low-weight halfspaces) cannot be computed by a polynomial threshold function (PTF) with fewer than n Ω(log?n/log?log?n) monomials. This is the first super-polynomial lower bound on the PTF length of this concept class, and is nearly optimal. For intersections of k=ω(log?n) low-weight halfspaces, we improve our lower bound to $\min\{2^{\varOmega (\sqrt{n})},n^{\varOmega (k/\log k)}\},$ which too is nearly optimal. As a consequence, intersections of even two halfspaces are not computable by polynomial-weight PTFs, the most expressive class of functions known to be efficiently learnable via Jackson’s Harmonic Sieve algorithm. Finally, we report our progress on the weak learnability of intersections of halfspaces under the uniform distribution.  相似文献   

8.
Every Boolean function on n variables can be expressed as a unique multivariate polynomial modulo p for every prime p. In this work, we study how the degree of a function in one characteristic affects its complexity in other characteristics. We establish the following general principle: functions with low degree modulo p must have high complexity in every other characteristic q. More precisely, we show the following results about Boolean functions f : {0, 1}n → {0, 1} which depend on all n variables, and distinct primes pq:
  o If f has degree o(log n) modulo p, then it must have degree Ω(n1−o(1)) modulo q. Thus a Boolean function has degree o(log n) in at most one characteristic. This result is essentially tight as there exist functions that have degree log n in every characteristic.  相似文献   

9.
Distance labeling schemes are composed of a marker algorithm for labeling the vertices of a graph with short labels, coupled with a decoder algorithm allowing one to compute the distance between any two vertices directly from their labels (without using any additional information). As applications for distance labeling schemes concern mainly large and dynamically changing networks, it is of interest to study distributed dynamic labeling schemes. The current paper considers the problem on dynamic trees, and proposes efficient distributed schemes for it. The paper first presents a labeling scheme for distances in the dynamic tree model, with amortized message complexity O(log2 n) per operation, where n is the size of the tree at the time the operation takes place. The protocol maintains O(log2 n) bit labels. This label size is known to be optimal even in the static scenario. A more general labeling scheme is then introduced for the dynamic tree model, based on extending an existing static tree labeling scheme to the dynamic setting. The approach fits a number of natural tree functions, such as distance, separation level, and flow. The main resulting scheme incurs an overhead of an O(log n) multiplicative factor in both the label size and amortized message complexity in the case of dynamically growing trees (with no vertex deletions). If an upper bound on n is known in advance, this method yields a different tradeoff, with an O(log2 n/log log n) multiplicative overhead on the label size but only an O(log n/log log n) overhead on the amortized message complexity. In the fully dynamic model the scheme also incurs an increased additive overhead in amortized communication, of O(log2 n) messages per operation.  相似文献   

10.
We study the power of nonadaptive quantum query algorithms, which are algorithms whose queries to the input do not depend on the result of previous queries. First, we show that any bounded-error nonadaptive quantum query algorithm that computes a total boolean function depending on n variables must make Ω(n) queries to the input in total. Second, we show that, if there exists a quantum algorithm that uses k nonadaptive oracle queries to learn which one of a set of m boolean functions it has been given, there exists a nonadaptive classical algorithm using queries to solve the same problem. Thus, in the nonadaptive setting, quantum algorithms for these tasks can achieve at most a very limited speed-up over classical query algorithms.  相似文献   

11.
D. Eppstein 《Algorithmica》1995,13(5):462-471
We convert constructive solid geometry input to explicit representations of polygons, polyhedra, or more generallyd-dimensional polyhedra, in time and space 0(nd), improving a previous0(nd logn) time bound. We then show that any Boolean formula can be preprocessed in time0(n log n/log logn) and linear space so that the value of the formula can be maintained, as variables are changed one by one, in time O(log n/log logn) per change; this speeds up certain output-sensitive algorithms for constructive solid geometry.  相似文献   

12.
We study the approximation of the smallest eigenvalue of a Sturm–Liouville problem in the classical and quantum settings. We consider a univariate Sturm–Liouville eigenvalue problem with a nonnegative function q from the class C2 ([0,1]) and study the minimal number n() of function evaluations or queries that are necessary to compute an -approximation of the smallest eigenvalue. We prove that n()=(–1/2) in the (deterministic) worst case setting, and n()=(–2/5) in the randomized setting. The quantum setting offers a polynomial speedup with bit queries and an exponential speedup with power queries. Bit queries are similar to the oracle calls used in Grovers algorithm appropriately extended to real valued functions. Power queries are used for a number of problems including phase estimation. They are obtained by considering the propagator of the discretized system at a number of different time moments. They allow us to use powers of the unitary matrix exp((1/2) iM), where M is an n× n matrix obtained from the standard discretization of the Sturm–Liouville differential operator. The quantum implementation of power queries by a number of elementary quantum gates that is polylog in n is an open issue. In particular, we show how to compute an -approximation with probability (3/4) using n()=(–1/3) bit queries. For power queries, we use the phase estimation algorithm as a basic tool and present the algorithm that solves the problem using n()=(log –1) power queries, log 2–1 quantum operations, and (3/2) log –1 quantum bits. We also prove that the minimal number of qubits needed for this problem (regardless of the kind of queries used) is at least roughly (1/2) log –1. The lower bound on the number of quantum queries is proven in Bessen (in preparation). We derive a formula that relates the Sturm–Liouville eigenvalue problem to a weighted integration problem. Many computational problems may be recast as this weighted integration problem, which allows us to solve them with a polylog number of power queries. Examples include Grovers search, the approximation of the Boolean mean, NP-complete problems, and many multivariate integration problems. In this paper we only provide the relationship formula. The implications are covered in a forthcoming paper (in preparation).PACS: 03.67.Lx, 02.60.-x.  相似文献   

13.
We study the problem of reconstructing unknown graphs under the additive combinatorial search model. The main result concerns the reconstruction of bounded degree graphs, i.e., graphs with the degree of all vertices bounded by a constant d . We show that such graphs can be reconstructed in O(dn) nonadaptive queries, which matches the information-theoretic lower bound. The proof is based on the technique of separating matrices. A central result here is a new upper bound for a general class of separating matrices. As a particular case, we obtain a tight upper bound for the class of d -separating matrices, which settles an open question stated by Lindstr?m in [20]. Finally, we consider several particular classes of graphs. We show how an optimal nonadaptive solution of O(n 2 / log n) queries for general graphs can be obtained. We also prove that trees with unbounded vertex degree can be reconstructed in a linear number of queries by a nonadaptive algorithm. Received August 1997; revised January 1999.  相似文献   

14.
   Abstract. A graph-theoretic approach to study the complexity of Boolean functions was initiated by Pudlák, R?dl, and Savicky [PRS] by defining models of computation on graphs. These models generalize well-known models of Boolean complexity such as circuits, branching programs, and two-party communication complexity. A Boolean function f is called a 2-slice function if it evaluates to zero on inputs with less than two 1's and evaluates to one on inputs with more than two 1's. On inputs with exactly two 1's f may be nontrivially defined. There is a natural correspondence between 2-slice functions and graphs. Using the framework of graph complexity, we show that sufficiently strong superlinear monotone lower bounds for the very special class of {2-slice functions} would imply superpolynomial lower bounds over a complete basis for certain functions derived from them. We prove, for instance, that a lower bound of n 1+Ω(1) on the (monotone) formula size of an explicit 2-slice function f on n variables would imply a 2 Ω(ℓ) lower bound on the formula size over a complete basis of another explicit function g on l variables, where l=Θ( log n) . We also consider lower bound questions for depth-3 bipartite graph complexity. We prove a weak lower bound on this measure using algebraic methods. For instance, our result gives a lower bound of Ω(( log n) 3 / ( log log n) 5 ) for bipartite graphs arising from Hadamard matrices, such as the Paley-type bipartite graphs. Lower bounds for depth-3 bipartite graph complexity are motivated by two significant applications: (i) a lower bound of n Ω(1) on the depth-3 complexity of an explicit n -vertex bipartite graph would yield superlinear size lower bounds on log-depth Boolean circuits for an explicit function, and (ii) a lower bound of
would give an explicit language outside the class Σ 2 cc of the two-party communication complexity as defined by Babai, Frankl, and Simon [BFS]. Our lower bound proof is based on sign-representing polynomials for DNFs and lower bounds on ranks of ±1 matrices even after being subjected to sign-preserving changes to their entries. For the former, we use a result of Nisan and Szegedy [NS] and an idea from a recent result of Klivans and Servedio [KS]. For the latter, we use a recent remarkable lower bound due to Forster [F1].  相似文献   

15.
The longest common subsequence problem revisited   总被引:2,自引:0,他引:2  
This paper re-examines, in a unified framework, two classic approaches to the problem of finding a longest common subsequence (LCS) of two strings, and proposes faster implementations for both. Letl be the length of an LCS between two strings of lengthm andn m, respectively, and let s be the alphabet size. The first revised strategy follows the paradigm of a previousO(ln) time algorithm by Hirschberg. The new version can be implemented in timeO(lm · min logs, logm, log(2n/m)), which is profitable when the input strings differ considerably in size (a looser bound for both versions isO(mn)). The second strategy improves on the Hunt-Szymanski algorithm. This latter takes timeO((r +n) logn), wherermn is the total number of matches between the two input strings. Such a performance is quite good (O(n logn)) whenrn, but it degrades to (mn logn) in the worst case. On the other hand the variation presented here is never worse than linear-time in the productmn. The exact time bound derived for this second algorithm isO(m logn +d log(2mn/d)), whered r is the number ofdominant matches (elsewhere referred to asminimal candidates) between the two strings. Both algorithms require anO(n logs) preprocessing that is nearly standard for the LCS problem, and they make use of simple and handy auxiliary data structures.  相似文献   

16.
We show that converting an n-digit number from a binary to Fibonacci representation and backward can be realized by Boolean circuits of complexity O(M(n) log n), where M(n) is the complexity of integer multiplication. For a more general case of r-Fibonacci representations, the obtained complexity estimates are of the form \({2^O}{(\sqrt {\log n} )_n}\).  相似文献   

17.
We show a construction of a PCP with both sub-constant error and almost-linear size. Specifically, for some constant 0 < α < 1, we construct a PCP verifier for checking satisfiability of Boolean formulas that on input of size n uses log n+O((log n)1-a)\log\, n+O((\log\, n)^{1-\alpha}) random bits to make 7 queries to a proof of size n·2O((log n)1-a)n·2^{O((\log\, n)^{1-\alpha})}, where each query is answered by O((log n)1-a)O((\log\, n)^{1-\alpha}) bit long string, and the verifier has perfect completeness and error 2-W((log n)a)2^{-\Omega((\log\, n)^{\alpha})}.  相似文献   

18.
Summary Using modular arithmetic we obtain the following improved bounds on the time and space complexities for n × n Boolean matrix multiplication: O(n log 2 7 lognlogloglognloglogloglogn) bit operations and O(n 2loglog n) bits of storage on a logarithmic cost RAM having no multiply or divide instruction; O(n log 2 7(logn)2–1/2log 2 7(loglog n)1/2log 2 7–1) bit operations and O(n 2log n) bits of storage on a RAM which can use indirect addressing for table lookups. The first algorithm can be realized as a Boolean circuit with O(n log 2 7lognlogloglognloglogloglogn) gates. Whenever n×n arithmetic matrix multiplication can be performed in less than O(n log 2 7) arithmetic operations, our results have corresponding improvements.This work was supported in part by the Office of Naval Research under contract N00014-67-0204-0063, by the National Research Council of Canada under grant A4307, and by the National Science Foundation under grants MCS76-17321 and GJ-43332  相似文献   

19.
It is known that if a Boolean function f in n variables has a DNF and a CNF of size then f also has a (deterministic) decision tree of size exp(O(log n log2 N)). We show that this simulation cannot be made polynomial: we exhibit explicit Boolean functions f that require deterministic trees of size exp where N is the total number of monomials in minimal DNFs for f and ?f. Moreover, we exhibit new examples of explicit Boolean functions that require deterministic read-once branching programs of exponential size whereas both the functions and their negations have small nondeterministic read-once branching programs. One example results from the Bruen—Blokhuis bound on the size of nontrivial blocking sets in projective planes: it is remarkably simple and combinatorially clear. Other examples have the additional property that f is in AC0. Received: June 5 1997.  相似文献   

20.
Xin He  Yaacov Yesha 《Algorithmica》1990,5(1):129-145
We develop efficient parallel algorithms for ther-dominating set and thep-center problems on trees. On a concurrent-read exclusive-write PRAM, our algorithm for ther-dominating set problem runs inO(logn log logn) time withn processors. The algorithm for thep-center problem runs inO(log2 n log logn) time withn processors.Xin He was supported in part by an Ohio State University Presidential Fellowship, and by the Office of Research and Graduate Studies of Ohio State University. Yaacov Yesha was supported in part by the National Science Foundation under Grant No. DCR-8606366.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号