首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
《微型机与应用》2017,(12):16-18
采用AP聚类算法进行复杂网络社团挖掘,提高了社团挖掘的精度,但在处理海量数据时算法速率明显下降,其中一个重要原因是单台计算机的计算性能无法满足海量数据的计算需求。为了提高社团挖掘AP聚类在处理海量数据时的速率,设计出一种在Hadoop框架下进行的社团挖掘的并行化AP聚类方法;将传统单机模式下的社团挖掘AP聚类算法在分布式平台上分布进行并行化。实验表明,社团挖掘的并行化AP聚类方法在社团挖掘精度不下降的情况下提高了海量数据的社团挖掘速率。  相似文献   

2.
针对传统的聚类算法K-means对初始中心点的选择非常依赖,容易产生局部最优而非全局最优的聚类结果,同时难以满足人们对海量数据进行处理的需求等缺陷,提出了一种基于MapReduce的改进K-means聚类算法。该算法结合系统抽样方法得到具有代表性的样本集来代替海量数据集;采用密度法和最大最小距离法得到优化的初始聚类中心点;再利用Canopy算法得到粗略的聚类以降低运算的规模;最后用顺序组合MapReduce编程模型的思想实现了算法的并行化扩展,使之能够充分利用集群的计算和存储能力,从而适应海量数据的应用场景;文中对该改进算法和传统聚类算法进行了比较,比较结果证明其性能优于后者;这表明该改进算法降低了对初始聚类中心的依赖,提高了聚类的准确性,减少了聚类的迭代次数,降低了聚类的时间,而且在处理海量数据时表现出较大的性能优势。  相似文献   

3.
针对传统K-means算法在处理海量数据时,存在计算复杂度高和计算能力不足等问题,提出了SKDk-means (Spark based kd-tree K-means)并行聚类算法.该算法通过引入kd-tree改善初始中心点的选择,克服传统K-means算法因初始点的不确定性,易陷入局部最优解的问题,同时利用kd-tree的最近邻搜索减少K-means在迭代中的距离计算,加快聚类速度,并在Spark平台上实现了该算法的并行化,使其适用于海量数据聚类,最后通过实验验证了算法具有良好的准确率和并行计算性能.  相似文献   

4.
张石磊  武装 《计算机科学》2012,(Z2):115-118
随着信息技术的飞速发展,需要处理的数据量急剧增长,聚类算法的研究面临着海量数据分析和处理的挑战。对K-means聚类算法的优化进行了深入的研究,提出了首先选定初始聚类中心的并行K-means聚类算法。对不同大小的数据集进行测试实验,证明该优化算法具有更好的时间性、正确性和稳定性,适合于海量数据的分析和处理。  相似文献   

5.
针对K-means算法处理海量数据的聚类效果和速率,提出一种基于MapReduce框架下的K-means算法分布式并行化编程模型。首先对K-means聚类算法初始化敏感的问题,给出一种新的相异度函数,根据数据间的相异程度来确定k值,并选取相异度较小的点作为初始聚类中心,再把K-means算法部署在MapReduce编程模型上,通过改进MapReduce编程模型来加快K-means算法处理海量数据的速度。实验表明,基于MapReduce框架下改进的K-means算法与传统的K-means算法相比,准确率及收敛时间方面均有所提高,并且并行聚类模型在不同数据规模和计算节点数目上具有良好的扩展性。  相似文献   

6.
基于云计算的并行K-means聚类算法研究   总被引:2,自引:0,他引:2  
目前数据呈爆炸式增长,海量存储状态,给聚类研究带来了诸如计算复杂性和计算能力不足都很多问题;而云计算平台通过负载均衡,动态配置大量的虚拟计算资源,有效地突破了耗时耗能的瓶颈,在海量数据挖掘中体现出了其独特的优势;文章深入研究了基于云计算平台Hadoop的并行K-means算法,并结合MapReduce分布式计算模型,给出了算法设计的方法和策略,包括MapReduce处理的map、shuffle和Reduce 3个过程,仿真结果表明K-means并行算法的效率较高。  相似文献   

7.
为有效解决互联网医疗时代海量心电数据的处理问题,在Spark云平台下,提出一种双层并行化的改进遗传K-means聚类算法,用于心电数据挖掘。克服传统K-means算法对初始中心点敏感以及串行聚类算法效率低下等问题,结合Mallat小波变换预处理技术,较好实现海量心电数据中R波的提取。通过对MIT-BIH数据库的读取和分析,其结果表明,该算法比传统遗传K-means算法具有更高的聚类准确度,与串行聚类算法和Map Reduce计算模型相比,运行效率也有了较大提升。  相似文献   

8.
为了解决k-means算法在Hadoop平台下处理海量高维数据时聚类效果差,以及已有的改进算法不利于并行化等问题,提出了一种基于Hash改进的并行化方案。将海量高维的数据映射到一个压缩的标识空间,进而挖掘其聚类关系,选取初始聚类中心,避免了传统k-means算法对随机选取初始聚类中心的敏感性,减少了k-means算法的迭代次数。又结合MapReduce框架将算法整体并行化,并通过Partition、Combine等机制加强了并行化程度和执行效率。实验表明,该算法不仅提高了聚类的准确率和稳定性,同时具有良好的处理速度。  相似文献   

9.
针对海量数据背景下K-means聚类结果不稳定和收敛速度较慢的问题,提出了基于MapReduce框架下的K-means改进算法。首先,为了能获得K-means聚类的初始簇数,利用凝聚层次聚类法对数据集进行聚类,并用轮廓系数对聚类结果进行初步评价,将获得数据集的簇数作为K-means算法的初始簇中心进行聚类;其次,为了能适应于海量数据的聚类挖掘,将改进的K-means算法部署在MapReduce框架上进行运算。实验结果表明,在单机性能上,该方法具有较高的准确率和召回率,同时也具有较强的聚类稳定性;在集群性能上,也具有较好的加速比和运行速度。  相似文献   

10.
为了解决在面对海量数据时机器学习算法很难在有效时间内完成规定的任务,并且很难有效地处理高维度、海量数据等问题,提出了基于Hadoop分布式平台的谱聚类算法并行化研究。利用MapReduce编程模式,将传统的谱聚类算法进行重新编写;在该平台上用Canopy算法对数据进行预处理,以达到更好的聚类效果。实验结果表明了设计的分布式聚类算法在加速比等方面有良好的性能,并且在数据伸缩率方面效果明显,改进后的算法适合处理海量数据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号