首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
This field study measured ventilation rates and indoor air quality in 21 visits to retail stores in California. Three types of stores, such as grocery, furniture/hardware stores, and apparel, were sampled. Ventilation rates measured using a tracer gas decay method exceeded the minimum requirement of California's Title 24 Standard in all but one store. Concentrations of volatile organic compounds (VOCs), ozone, and carbon dioxide measured indoors and outdoors were analyzed. Even though there was adequate ventilation according to standard, concentrations of formaldehyde and acetaldehyde exceeded the most stringent chronic health guidelines in many of the sampled stores. The whole‐building emission rates of VOCs were estimated from the measured ventilation rates and the concentrations measured indoor and outdoor. Estimated formaldehyde emission rates suggest that retail stores would need to ventilate at levels far exceeding the current Title 24 requirement to lower indoor concentrations below California's stringent formaldehyde reference level. Given the high costs of providing ventilation, effective source control is an attractive alternative.  相似文献   

2.
M. Zaatari  J. Siegel 《Indoor air》2014,24(4):350-361
Particles in retail environments can have consequences for the occupational exposures of retail workers and customers, as well as the energy costs associated with ventilation and filtration. Little is known about particle characteristics in retail environments. We measured indoor and outdoor mass concentrations of PM10 and PM2.5, number concentrations of submicron particles (0.02–1 μm), size‐resolved 0.3–10 μm particles, as well as ventilation rates in 14 retail stores during 24 site visits in Pennsylvania and Texas. Overall, the results were generally suggestive of relatively clean environments when compared to investigations of other building types and ambient/occupational regulatory limits. PM10 and PM2.5 concentrations (mean ± s.d.) were 20 ± 14 and 11 ± 10 μg/m3, respectively, with indoor‐to‐outdoor ratios of 1.0 ± 0.7 and 0.88 ± 1.0. Mean submicron particle concentrations were 7220 ± 7500 particles/cm3 with an indoor‐to‐outdoor ratio of 1.18 ± 1.30. The median contribution to PM10 and PM2.5 concentrations from indoor sources (vs. outdoors) was 83% and 53%, respectively. There were no significant correlations between measured ventilation rates and particle concentrations of any size. When examining options to lower PM2.5 concentrations below regulatory limits, the required changes to ventilation and filtration efficiency were site specific and depended on the indoor and outdoor concentration, emission rate, and infiltration level.  相似文献   

3.
This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250 m downwind of the I‐80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir‐fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year‐round operation in California. Exhaust ventilation without enhanced filtration provided indoor PM2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection, whereas supply MERV16 filtration reduced PM2.5 by 97‐98% relative to outdoors. Supply filtration systems used little energy but provided no benefits for indoor‐generated particles. Systems with MERV13‐16 filter in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM2.5 by 93‐98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM2.5. Indoor ozone was 3‐4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM2.5 by 25‐75% when operated over the hour following cooking. The energy for year‐round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year.  相似文献   

4.
Most of human exposure to atmospheric pollutants occurs indoors, and the components of outdoor aerosols may have been changed in the way before reaching indoor spaces. Here we conducted real-time online measurements of mass concentrations and chemical composition of black carbon and the non-refractory species in PM2.5 in an occupied office for approximately one month. The open-close windows and controlled dampness experiments were also performed. Our results show that indoor aerosol species primarily originate from outdoors with indoor/outdoor ratio of these species typically less than unity except for certain organic aerosol (OA) factors. All aerosol species went through filtration upon transport indoors. Ammonium nitrate and fossil fuel OA underwent evaporation or particle-to-gas partitioning, while less oxidized secondary OA (SOA) underwent secondary formation and cooking OA might have indoor sources. With higher particulate matter (PM) mass concentration outdoors than in the office, elevated natural ventilation increased PM exposure indoors and this increased exposure was prolonged when outdoor PM was scavenged. We found that increasing humidity in the office led to higher indoor PM mass concentration particularly more oxidized SOA. Overall, our results highlight that indoor exposure of occupants is substantially different from outdoor in terms of mass concentrations and chemical species.  相似文献   

5.
This study numerically investigates airflow characteristics and particulate matter (PM) transport in multi-room buildings for different natural ventilation patterns with the same air change rate. Four typical natural ventilation patterns (full-open, pass-through, right short-circuit and left short-circuit), representing the ratios of the outlet-to-inlet opening size ranging from 1.67 to 0.17, are considered to study multi-room airflow characteristics. A measured indoor PM10 profile in Taipei Metropolis is input into the above four ventilation patterns as the initial condition of the PM size distribution. The time variation of indoor PM10/PM2.5/PM1 concentrations in each room for various ventilation patterns is next investigated. The effect of ventilation pattern on particle removal mechanism is emphasized. The results show that although the air change rate of the building is the same, airflow characteristics and PM transport behaviors are quite different for various ventilation patterns. The removal efficiencies of PM10 for the four ventilation patterns are all found to be much better than those of PM2.5 and PM1. Particle escape is the major mechanism to remove PM for rooms with double-sided ventilation, whereas particle deposition is important for single-sided ventilation rooms.  相似文献   

6.
Retail buildings have a potential for both short‐term (customer) and long‐term (occupational) exposure to indoor pollutants. However, little is known about volatile organic compound (VOC) concentrations in the retail sector and influencing factors, such as ventilation, in‐store activities, and store type. We measured VOC concentrations and ventilation rates in 14 retail stores in Texas and Pennsylvania. With the exception of formaldehyde and acetaldehyde, VOCs were present in retail stores at concentrations well below health guidelines. Indoor formaldehyde concentrations ranged from 4.6 ppb to 67 ppb. The two mid‐sized grocery stores in the sample had the highest levels of ethanol and acetaldehyde, with concentrations up to 2.6 ppm and 92 ppb, respectively, possibly due to the preparation of dough and baking activities. Indoor‐to‐outdoor concentration ratios indicated that indoor sources were the main contributors to indoor VOC concentrations for the majority of compounds. There was no strong correlation between ventilation and VOC concentrations across all stores. However, increasing the air exchange rates at two stores led to lower indoor VOC concentrations, suggesting that ventilation can be used to reduce concentrations for some specific stores.  相似文献   

7.
A six‐month winter‐spring study was conducted in a suburb of the northern European city of Kuopio, Finland, to identify and quantify factors determining daily personal exposure and home indoor levels of fine particulate matter (PM2.5, diameter <2.5 µm) and its light absorption coefficient (PM2.5abs), a proxy for combustion‐derived black carbon. Moreover, determinants of home indoor ozone (O3) concentration were examined. Local central site outdoor, home indoor, and personal daily levels of pollutants were monitored in this suburb among 37 elderly residents. Outdoor concentrations of the pollutants were significant determinants of their levels in home indoor air and personal exposures. Natural ventilation in the detached and row houses increased personal exposure to PM2.5, but not to PM2.5abs, when compared with mechanical ventilation. Only cooking out of the recorded household activities increased indoor PM2.5. The use of a wood stove room heater or wood‐fired sauna stove was associated with elevated concentrations of personal PM2.5 and PM2.5abs, and indoor PM2.5abs. Candle burning increased daily indoor and personal PM2.5abs, and it was also a determinant of indoor ozone level. In conclusion, relatively short‐lasting wood and candle burning of a few hours increased residents’ daily exposure to potentially hazardous, combustion‐derived carbonaceous particulate matter.  相似文献   

8.
Air quality in indoor environments can have significant impacts on people's health, comfort, and productivity. Particulate matter (PM; also referred to as aerosols) is an important type of air pollutant, and exposure to outdoor PM has been associated with a variety of diseases. In addition, there is increasing recognition and concern of airborne transmission of viruses, including severe acute respiratory syndrome corona-virus 2 (SARS-CoV-2), especially in indoor environments. Despite its importance, indoor PM data during the COVID-19 pandemic are scarce. In this work, we measured and compared particle number and mass concentrations in aircraft cabins during commercial flights with various indoor environments in Atlanta, GA, during July 2020, including retail stores, grocery stores, restaurants, offices, transportation, and homes. Restaurants had the highest particle number and mass concentrations, dominated by cooking emissions, while in-flight aircraft cabins had the lowest observed concentrations out of all surveyed spaces.  相似文献   

9.
We assessed the chronic health risks from inhalation exposure to volatile organic compounds (VOCs) and particulate matter (PM2.5) in U.S. offices, schools, grocery, and other retail stores and evaluated how chronic health risks were affected by changes in ventilation rates and air filtration efficiency. Representative concentrations of VOCs and PM2.5 were obtained from available data. Using a mass balance model, changes in exposure to VOCs and PM2.5 were predicted if ventilation rate were to increase or decrease by a factor of two, and if higher efficiency air filters were used. Indoor concentrations were compared to health guidelines to estimate percentage exceedances. The estimated chronic health risks associated with VOC and PM2.5 exposures in these buildings were low relative to the risks from exposures in homes. Chronic health risks were driven primarily by exposures to PM2.5 that were evaluated using disease incidence of mortality, chronic bronchitis, and non‐fatal stroke. The leading cancer risk factor was exposure to formaldehyde. Using disability‐adjusted life years (DALYs) to account for both cancer and non‐cancer effects, results suggest that increasing ventilation alone is ineffective at reducing chronic health burdens. Other strategies, such as pollutant source control and the use of particle filtration, should also be considered.  相似文献   

10.
Portable air cleaners are increasingly used in polluted areas in an attempt to reduce human exposure; however, there has been limited work characterizing their effectiveness at reducing exposure. With this in mind, we recruited forty-three children with asthma from suburban Shanghai and deployed air cleaners (with HEPA and activated carbon filters) in their bedrooms. During both 2-week filtration and non-filtration periods, low-cost PM2.5 and O3 air monitors were used to measure pollutants indoors, outdoors, and for personal exposure. Indoor PM2.5 concentrations were reduced substantially with the use of air cleaners, from 34 ± 17 to 10 ± 8 µg/m3, with roughly 80% of indoor PM2.5 estimated to come from outdoor sources. Personal exposure to PM2.5 was reduced from 40 ± 17 to 25 ± 14 µg/m3. The more modest reductions in personal exposure and high contribution of outdoor PM2.5 to indoor concentrations highlight the need to reduce outdoor PM2.5 and/or to clean indoor air in multiple locations. Indoor O3 concentrations were generally low (mean = 8±4 ppb), and no significant difference was seen by filtration status. The concentrations of pollutants and the air cleaner effectiveness were highly variable over time and across homes, highlighting the usefulness of real-time air monitors for understanding individual exposure reduction strategies.  相似文献   

11.
Asian dust storms (ADS) originating from the arid deserts of Mongolia and China are a well-known springtime meteorological phenomenon throughout East Asia. The ventilation systems in office utilize air from outside and therefore it is necessary to understand how these dust storms affect the concentrations of PM2.5 and PM10 in both the indoor and outdoor air. We measured dust storm pollution particles in an office building using a direct-reading instrument (PC-2 Quartz Crystal Microbalance, QCM) that measured particle size and concentration every 10 min for 1 h, three times a day. A three-fold increase in the concentrations of PM2.5 and PM10 in the indoor and outdoor air was recorded during the dust storms. After adjusting for other covariates, autoregression models indicated that PM2.5 and PM10 in the indoor air increased significantly (21.7 μg/m3 and 23.0 μg/m3 respectively) during dust storms. The ventilation systems in high-rise buildings utilize air from outside and therefore the indoor concentrations of fine and coarse particles in the air inside the buildings are significantly affected by outside air pollutants, especially during dust storms.  相似文献   

12.
Inadequate ventilation of classrooms may lead to increased concentrations of pollutants generated indoors in schools. The FRESH study, on the effects of increased classroom ventilation on indoor air quality, was performed in 18 naturally ventilated classrooms of 17 primary schools in the Netherlands during the heating seasons of 2010–2012. In 12 classrooms, ventilation was increased to targeted CO2 concentrations of 800 or 1200 ppm, using a temporary CO2 controlled mechanical ventilation system. Six classrooms were included as controls. In each classroom, data on endotoxin, β(1,3)‐glucans, and particles with diameters of <10 μm (PM10) and <2.5 μm (PM2.5) and nitrogen dioxide (NO2) were collected during three consecutive weeks. Associations between the intervention and these measured indoor air pollution levels were assessed using mixed models, with random classroom effects. The intervention lowered endotoxin and β(1,3)‐glucan levels and PM10 concentrations significantly. PM10 for instance was reduced by 25 μg/m³ (95% confidence interval 13–38 μg/m³) from 54 μg/m³ at maximum ventilation rate. No significant differences were found between the two ventilation settings. Concentrations of PM2.5 and NO2 were not affected by the intervention. Our results provide evidence that increasing classroom ventilation is effective in decreasing the concentrations of some indoor‐generated pollutants.  相似文献   

13.
Data were collected in 70 detached houses built in 2011-2017 in compliance with the mechanical ventilation requirements of California's building energy efficiency standards. Each home was monitored for a 1-week period with windows closed and the central mechanical ventilation system operating. Pollutant measurements included time-resolved fine particulate matter (PM2.5) indoors and outdoors and formaldehyde and carbon dioxide (CO2) indoors. Time-integrated measurements were made for formaldehyde, NO2, and nitrogen oxides (NOX) indoors and outdoors. Operation of the cooktop, range hood, and other exhaust fans was continuously recorded during the monitoring period. Onetime diagnostic measurements included mechanical airflows and envelope and duct system air leakage. All homes met or were very close to meeting the ventilation requirements. On average, the dwelling unit ventilation fan moved 50% more airflow than the minimum requirement. Pollutant concentrations were similar to or lower than those reported in a 2006-2007 study of California new homes built in 2002-2005. Mean and median indoor concentrations were lower by 44% and 38% for formaldehyde and 44% and 54% for PM2.5. Ventilation fans were operating in only 26% of homes when first visited, and the control switches in many homes did not have informative labels as required by building standards.  相似文献   

14.
A number of studies indicate cooking is a major source of exposure to particulate matter, but few studies have measured indoor air pollution in restaurants, where cooking predominates. We made 73 visits by car to 65 different non‐smoking restaurants in 10 Northern California towns while carrying portable continuous monitors that unobtrusively measured ultrafine (down to 10 nm) and fine (PM2.5) particles to characterize indoor restaurant exposures, comparing them with exposures in the car. The mean ultrafine number concentrations in the restaurants on dinner visits averaging 1.4 h was 71 600 particles/cm3, or 4.3 times the mean concentration on car trips, and 12.3 times the mean background concentration in the residence. Restaurants that cooked dinner in the same room as the patrons had higher ultrafine concentrations than restaurants with separate kitchens. Restaurant PM2.5 mass concentrations averaged 36.3 μg/m3, ranging from 1.5 to 454 μg/m3, but were relatively low on most visits: 43% of the indoor means were below 10 μg/m3 and 66% were below 20 μg/m3, with 5.5% above 100 μg/m3. Exposure to fine and ultrafine particles when visiting a restaurant exceeded the exposure a person received while traveling by car to and from the restaurant.  相似文献   

15.
Although many U.S. children spend time in child care, little information exists on exposures to airborne particulate matter (PM) in this environment, even though PM may be associated with asthma and other respiratory illness, which is a key concern for young children. To address this data gap, we measured ultrafine particles (UFP), PM2.5, PM10, and black carbon in 40 California child‐care facilities and examined associations with potential determinants. We also tested a low‐cost optical particle measuring device (Dylos monitor). Median (interquartile range) concentrations for indoor UFP, gravimetric PM2.5, real‐time PM2.5, gravimetric PM10, and black carbon over the course of a child‐care day were 14 000 (11 000‐29 000) particles/cm3, 15 (9.6‐21) μg/m3, 15 (11‐23) μg/m3, 48 (33‐73) μg/m3, and 0.43 (0.25‐0.65) ng/m3, respectively. Indoor black carbon concentrations were inversely associated with air exchange rate (Spearman's rho = ?.36) and positively associated with the sum of all Gaussian‐adjusted traffic volume within a one‐kilometer radius (Spearman's rho = .45) (P‐values <.05). Finally, the Dylos may be a valid low‐cost alternative to monitor PM levels indoors in future studies. Overall, results indicate the need for additional studies examining particle levels, potential health risks, and mitigation strategies in child‐care facilities.  相似文献   

16.
Household humidification is widely practiced to combat dry indoor air. While the benefits of household humidification are widely perceived, its implications to the indoor air have not been critically appraised. In particular, ultrasonic humidifiers are known to generate fine particulate matter (PM). In this study, we first conducted laboratory experiments to investigate the size, quantity, and chemical composition of PM generated by an ultrasonic humidifier. The mass of PM generated showed a correlation with the total alkalinity of charge water, suggesting that CaCO3 is likely making a major contribution to PM. Ion chromatography analysis revealed a large amount of SO42− in PM, representing a previously unrecognized indoor source. Preliminary results of organic compounds being present in humidifier PM are also presented. A whole-house experiment was further conducted at an actual residential house, with five low-cost sensors (AirBeam) monitoring PM in real time. Operation of a single ultrasonic humidifier resulted in PM2.5 concentrations up to hundreds of μg m−3, and its influence extended across the entire household. The transport and loss of PM2.5 depended on the rate of air circulation and ventilation. This study emphasizes the need to further investigate the impact of humidifier operation, both on human health and on the indoor atmospheric chemistry, for example, partitioning of acidic and basic compounds.  相似文献   

17.
Improving air quality in indoor environments where people live is of importance to protect human health. In this systematic review, we assessed the effectiveness of personal-level use of air filtration units in reducing indoor particulate matters (PM) concentrations under real-world situations following systematic review guidelines. A total of 54 articles were included in the review, in which 20 randomized controlled/crossover trials that reported the changes in indoor fine PM (PM2.5) concentrations were quantitatively assessed in meta-analysis. Standardized mean differences (SMDs) were calculated for changes in indoor PM concentrations following air filtration interventions. Moderate-to-large reductions of 11%–82% in indoor PM2.5 concentrations were observed with SMD of −1.19 (95% CI: −1.50, −0.88). The reductions in indoor PM concentrations varied by geographical locations, filtration technology employed, indoor environmental characteristics, and air pollution sources. Most studies were graded with low-to-moderate risk of bias; however, the overall certainty of evidence for indoor PM concentration reductions was graded at very low level. Considering the effectiveness of indoor air filtration under practical uses, socio-economic disparities across study populations, and costs of air filter replacement over time, our results highlight the importance of reducing air pollution exposure at the sources.  相似文献   

18.
Residential energy efficiency and ventilation retrofits (eg, building weatherization, local exhaust ventilation, HVAC filtration) can influence indoor air quality (IAQ) and occupant health, but these measures’ impact varies by occupant activity. In this study, we used the multizone airflow and IAQ analysis program CONTAM to simulate the impacts of energy retrofits on indoor concentrations of PM2.5 and NO2 in a low‐income multifamily housing complex in Boston, Massachusetts (USA). We evaluated the differential impact of residential activities, such as low‐ and high‐emission cooking, cigarette smoking, and window opening, on IAQ across two seasons. We found that a comprehensive package of energy and ventilation retrofits was resilient to a range of occupant activities, while less holistic approaches without ventilation improvements led to increases in indoor PM2.5 or NO2 for some populations. In general, homes with simulated concentration increases included those with heavy cooking and no local exhaust ventilation, and smoking homes without HVAC filtration. Our analytical framework can be used to identify energy‐efficient home interventions with indoor retrofit resiliency (ie, those that provide IAQ benefits regardless of occupant activity), as well as less resilient retrofits that can be coupled with behavioral interventions (eg, smoking cessation) to provide cost‐effective, widespread benefits.  相似文献   

19.
School-age children are particularly susceptible to exposure to air pollutants. To quantify factors affecting children's exposure at school, indoor and outdoor microenvironmental air pollutant concentrations were measured at 32 selected primary and secondary schools in Hong Kong. Real-time PM10, PM2.5, NO2, and O3 concentrations were measured in 76 classrooms and 23 non-classrooms. Potential explanatory factors related to building characteristics, ventilation practice, and occupant activities were measured or recorded. Their relationship with indoor measured concentrations was examined using mixed linear regression models. Ten factors were significantly associated with indoor microenvironmental concentrations, together accounting for 74%, 61%, 46%, and 38% of variations observed for PM2.5, PM10, O3, and NO2 microenvironmental concentrations, respectively. Outdoor concentration is the single largest predictor for indoor concentrations. Infiltrated outdoor air pollution contributes to 90%, 70%, 75%, and 50% of PM2.5, PM10, O3, and NO2 microenvironmental concentrations, respectively, in classrooms during school hours. Interventions to reduce indoor microenvironmental concentrations can be prioritized in reducing ambient air pollution and infiltration of outdoor pollution. Infiltration factors derived from linear regression models provide useful information on outdoor infiltration and help address the gap in generalizable parameter values that can be used to predict school microenvironmental concentrations.  相似文献   

20.
Perception of indoor air quality (PIAQ) was evaluated in a nationwide survey of 567 French dwellings, and this survey was combined with measurements of gaseous and particulate matter (PM10 and PM2.5) indoor air pollutants and indoor climate parameters. The perception was assessed on a nine‐grade scale by both the occupants of the dwellings and the inspectors who performed the measurements. The occupants perceived the air quality in their homes as more pleasant than the inspectors. The inspectors perceived the air quality as more unpleasant in dwellings in which the residents smoked indoors. Significant associations between PIAQ and indoor air pollutant concentrations were observed for both the inspectors and, to a lesser extent, the occupants. Introducing confounding parameters, such as building and personal characteristics, into a multivariate model suppressed most of the observed bivariate correlations and identified the tenure status of the occupants and their occupation as the parameters that most influenced their PIAQ. For the inspectors, perceived air quality was affected by the presence of smokers, the season, the type of ventilation, retrofitting, and the concentrations of acetaldehyde and acrolein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号