首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 221 毫秒
1.
以自制的2,2,6,6-四甲基哌啶-1-氧(TEMPO)作为稳定氮氧自由基,研究了TEMPO的存在对过氧化二苯甲酰(BPO)引发的苯乙烯聚合反应的影响。在此基础上,采用氧化-还原引发体系和自由基捕捉反应一步合成了带有羟基和2,2,6,6-四甲基哌啶-1-氧基团的新型引发剂;由此引发剂通过简易可行的可控自由基聚合反应制备了窄分散性的端羟基聚苯乙烯齐聚物,再经酯交换化反应合成了窄分散性聚苯乙烯大分子单体;最后以聚苯乙烯大分子单体和甲基丙烯酸甲酯进行共聚合反应制备了聚甲基丙烯酸甲酯接枝聚苯乙烯(PMMA-g-PS)接枝共聚物。研究结果表明端羟基聚苯乙烯齐聚物和聚苯乙烯大分子单体的分子质量分布指数为1.3左右(<1.5),而且分子质量实测值与理论计算值能够很好地吻合,合成的聚苯乙烯大分子单体可以和甲基丙烯酸甲酯顺利进行共聚合反应合成接枝共聚物。  相似文献   

2.
黄酮类化合物抗氧化活性的结构因素   总被引:24,自引:0,他引:24  
用结构化学和量子化学半经验计算方法研究几种典型黄酮类化合物,探讨影响黄酮类化合物抗氧化活性的结构因素。研究结果表明:(1)在分子内形成半醌式自由基时所需能量ΔHOF较低,其形成的自由基较稳定,从而具有较高的抗氧化活性。(2)电子自旋密度分布的均匀性,是黄酮类抗氧化性较强的重要原因。含邻二酚羟基的黄酮形成的半醌式自由基,电子自旋密度分布比较均匀,而且分子中半醌式基团与邻位酚羟基形成分子内氢键使体系能位降低,因而黄酮类化合物中具有邻二羟基酚的品种比含间二羟基酚的抗氧化活性强。(3)分子中的酚羟基的数目和可以形成氢键的数目与分子的抗氧化活性正相关,是黄酮类化合物具有强抗氧化活性的重要因素。研究表明,通过改变黄酮的羟基取代,使黄酮半醌式自由基的电子自旋密度分布更加均匀,用化学修饰增加黄酮类化合物的酚羟基数量以及形成分子内氢键的数目是提高黄酮抗氧化活性的途径。  相似文献   

3.
黄酮类药物具有广谱的药理活性和较低毒性,其中抗氧化活性非常重要.本文利用半经验分子轨道AM1方法对黄酮类药物进行了量化计算,通过计算得到羟基氧原子Mulliken电荷值,B环上6个C原子电荷之和QB等量化参数,结合疏水参数logP对黄酮类药物的抗氧化活性进行理论研究.结果表明:黄酮分子上羟基氧的MC(Mulliken Charge)值,QB的大小,羟基数目Nh及其在分子结构上的位置,C2-C3之间是否双键结构以及疏水参数logP对黄酮类药物的抗氧化活性都有重要影响.选取不同参数组合建立三个QSAR方程,经检验其稳定性和预测能力较好.  相似文献   

4.
羟基自由基(·OH)是活跃性、进攻性最强的活性氧分子,具有非常高的反应速率常数、电负性和极强的氧化电极电位,利用·OH作为氧化剂的高级氧化技术具有广阔的应用前景.本文从·OH的产生方法及基本原理出发,介绍了芬顿法、电芬顿法、紫外光催化氧化剂法、超声氧化法及其他复合方法的原理及其优缺点.最后综述了以上方法在污水处理、土壤修复、垃圾渗滤液处理、重金属络合物处理以及光学材料超精密加工等方面的应用进展及应用局限.  相似文献   

5.
采用VSMP方法从大量的分子结构描述符中筛选最优子集,用多元线性回归方法分别构建了羟基多溴二苯醚(hydroxylated polybrominated diphenyl ethers,OH-PBDEs)对细胞色素CYP19介导类固醇生成的抑制活性,甲状腺受体-β(thyroid receptors,TR-β)的激素活性以及与甲状腺素结合球蛋白(thyrox-ine-binding globulin,TBG)和甲状腺转运蛋白(transthyretin,TTR)之间结合能力的定量构效关系(quantita-tive structure-activity relationship,QSAR)模型。模型的留一法交叉验证(leave-one-out cross validation,LOO-CV)相关系数Q2和拟合相关系数R2均高于0.95和0.97,表明模型具有良好的稳健性、拟合能力和预测能力。QSAR模型表明OH-PBDEs的分子三维结构和芳香性是其活性的重要影响因素。另外,分子中溴原子数量和取代位置对OH-PBDE生物活性具有重要影响。  相似文献   

6.
运用共沉淀-低温水热技术制备软铋矿铁酸铋(S-BFO),构建S-BFO非均相活化过一硫酸盐(PMS)降解环丙沙星(CIP)体系。考察了氧化剂浓度、初始pH、催化剂投加量等关键因素对体系的影响,并模拟天然水体,探究了S-BFO/PMS体系稳定性。实验结果表明:在初始pH、25℃条件下,加入0.675 mmol/L PMS,1000 mg/L的催化剂,初始浓度为5.0 mg/L的CIP经反应60 min后去除率为84.8%。通过活性物质淬灭实验结果,发现体系中对目标有机污染物起主要降解作用的活性物质是单线态氧(1O2),而不是硫酸根自由基(·SO4-)和羟基自由基(·OH)。通过LC/MS/MS技术检测到了9种CIP降解过程中的主要中间产物,并确定了CIP通过羟基加成反应(路径I)及脱羧反应(路径II)被氧化去除的降解路径。  相似文献   

7.
羊栖菜提取物体外自由基清除能力的研究   总被引:17,自引:0,他引:17  
通过不同溶剂对羊栖菜有效成分进行提取,并采用DPPH(二苯代苦味酰自由基)体系、羟基自由基体系、烷基自由基引发的亚油酸氧化体系、超氧阴离子自由基体系对各提取物的抗氧化性进行研究,并同VE、TBHQ(特丁基对苯二酚)、茶多酚进行了比较,结果得出羊栖菜粗提物只在DPPH体系和烷基自由基引发的亚油酸氧化体系中具有清除作用,其中以0.5%Na2CO3(W/V)为溶剂的提取物抗氧化能力最好,而以DPPH体系作为检测系统最为稳定,效果最佳。  相似文献   

8.
工业革命以来,废水中持久性有机物因其复杂性、稳定性、高毒性成为水污染控制的核心对象。尽管水处理方法日新月异,但尚没有一种方法能艳压群芳:高级氧化技术在处理持久性污染物方面具有显著优势,但具有成本高、非选择性攻击、活性物种易淬灭失活的局限性;生物处理普适性强、抗冲击能力好,但对难降解污染物处理具有局限性。高级氧化生物降解近场耦合技术(ICAB)有机结合了高级氧化与生物降解的优势,解决了二者单独作用的局限问题,已证明能有效降解与矿化氯酚、抗生素、染料、硝基苯、多环芳烃等多种有机物。综述了高级氧化生物降解近场耦合技术的概念与特征、核心组成、优势与应用现状,及其在载体材料、活性物种淬灭和高传质反应器设计方面的瓶颈问题,并对其运用于实际水处理的未来发展进行了展望。论文旨在推广ICAB新技术在难降解有机废水处理领域的应用与发展。  相似文献   

9.
高级氧化技术是去除水中新型有机污染物的重要方法之一。研究Fe (Ⅱ)活化亚硫酸盐(Fe (Ⅱ)/亚硫酸盐)体系降解卡马西平(CBZ)的动力学及体系中活性氧化物种对CBZ降解的贡献。结果表明:当亚硫酸盐浓度由0.20 mmol/L增加至0.50 mmol/L时,反应20 min时Fe (Ⅱ)亚硫酸盐体系对CBZ的去除率不断增加,而进一步增加亚硫酸盐浓度时,卡马西平的去除率不再进一步增加。当反应初始pH值为3.0~7.0时,Fe (Ⅱ)/亚硫酸盐体系均可降解CBZ,在初始pH值为5.0时,此体系对CBZ的去除率最高,反应平衡时CBZ的去除率达87.3%。此外,铁盐中SO42-和Cl-对Fe (Ⅱ)/亚硫酸盐体系降解CBZ基本无影响。综合电子顺磁共振检测及淬灭剂实验的结果可知,Fe (Ⅱ)/亚硫酸盐体系中所产生的活性氧化物种包括硫酸根自由基(SO4-·)、羟基自由基(HO·)和过一硫酸根自由基(SO5-·),它们均对卡马西平的降解起贡献作用,其中SO4-·和HO·起主要贡献作用。  相似文献   

10.
氧化性物种在光电催化反应中的产生和利用   总被引:1,自引:1,他引:0  
光电催化技术结合了光催化氧化技术和电催化氧化技术的优点,具有更高的降解效率.文章详细介绍了光电催化反应中的氧化性物种(以羟基自由基为主)的产生途径和产生规律,分析了氧化性物种的利用方式.以期开发出兼具光催化活性和电催化活性的光电极,并将其用于光电催化降解有机污染物中.  相似文献   

11.
为比较不同水处理流程对后续消毒工艺的影响,通过中试试验,以天津市引黄水为研究对象,研究水处理工艺的改变对消毒工艺的影响规律.基于对各水处理流程的耗氯量、消毒副产物生成和消毒效果等的分析,探讨相关作用机理.结果表明,高锰酸盐复合药剂(PPC)预处理后能够延缓氯的消耗速度,深度处理工艺可进一步破坏耗氯物质.改变水处理流程可提高对有机物及藻类的去除率,降低水体中可与氯作用的前体物质浓度,在提高消毒效果的同时达到控制消毒副产物的目的.PPC预处理和深度处理联用提供了去除水中消毒副产物前体物的多级屏障,是改善出水水质的安全、高效的水处理流程.  相似文献   

12.
根椐天然水中有机物的形态和分子量分布状况,对比水处理中常用的超滤膜截留分子量,认为给水处理中超滤不能去除天然水中溶解态有机物.  相似文献   

13.
近年来,超滤(UF)膜组件的污染问题主要集中在有机物污染的范围.利用几种化学药剂对聚砜超滤膜有机污染造成的堵塞的清洗方式进行了试验研究,研究了UF膜组件的有机污染行为及膜组件污染物的去除.实验证明NaClO、H2O2和NaOH对于UF膜的有机污染去除都有一定的效果,其中H2O2的去除效果最好.控制原水的PH值有利于减轻膜污染.同时,以NaOH/NaClO及NaOH/H2O2水溶液相结合的方式对于膜的蛋白质污染的去除也有很好的效果,能够使超滤膜的渗透水通量恢复到初始值.同时还对UF膜的有机污染形成基理进行了分析.  相似文献   

14.
厌氧发酵是处理工业废水的关键技术之一。本文从污水处理的条件及目标出发,设计了一种有机污水处理方案,对其工艺中的加药单元、厌氧反应单元、净水单元、沼气处理单元的机理和流程分别做了详细介绍。特别是对其核心单元—厌氧反应器提供了结构和原理简图。经过该工艺处理后CODCr≤500 mg/L;BOD5≤280 mg/L;为了达到国家要求的排放标准,介绍了CASS工艺和MBR法两种后续工艺,并将它们与氧化沟法和活性污泥法进行了比较。  相似文献   

15.
通过水热法合成了一系列磁性空心Fe3O4纳米微球,并利用扫描电镜(SEM)、X-射线衍射(XRD)、热重(TG)、磁滞回线等测试方法研究了合成过程中不同分子量聚乙二醇(PEG400、1000、4000)及其添加量对Fe3O4微球粒径大小、磁性能、沉降性能的影响。研究发现在聚乙二醇分子量相同时,添加0.6g 聚乙二醇比添加0.3g 聚乙二醇得到的磁性Fe3O4空心纳米微球在水和有机溶剂DMAc中分散性好,所得到的微球粒径更大,磁性能相近。相比于聚乙二醇添加量,聚乙二醇分子量对磁性Fe3O4空心纳米微球磁性能影响更大。可通过改变聚乙二醇分子量大小,来调节磁性Fe3O4空心纳米微球粒径,磁性Fe3O4空心纳米微球粒径随聚乙二醇分子量的增加有下降趋势。通过调节聚乙二醇所得到的磁性Fe3O4空心纳米微球在水和有机溶剂二甲基乙酰胺(DMAc)中均具有良好的分散性,特别是在水溶剂中8天才完全沉降,添加0.6g PEG4000所得的磁性空心Fe3O4纳米微球在DMAc中分散性非常突出,有望在废水处理和电磁波吸收等领域得到很好应用。  相似文献   

16.
水中有机物和水处理工艺相关性分析   总被引:11,自引:0,他引:11  
在介绍水中有机物典型分类方法的基础上,阐明了不同分类有机物与水处理工艺之间的关系。混凝沉淀主要去除水中大分子,憎水性的有机物,活性炭倾向于吸附中间分子量,与自身孔径分布相一致的憎水有机物,臭氧氧化出水分子量减小,适量臭氧投加量要可以增强有机物的可吸附性,憎水性的大分子有机物是纳滤成先去除的主要对象,同时这一部分有机物也是膜污染的主要原因。  相似文献   

17.
氧化铝催化臭氧氧化去除水中痕量嗅味物质   总被引:1,自引:0,他引:1  
为解决饮用水中的嗅味问题,以γ-Al2O3为催化剂,考察强化臭氧氧化对水中嗅味物质的去除能力.以二甲基异茨醇(MIB)和土臭素(GSM)为代表,研究天然水体中γ-Al2O3催化臭氧氧化MIB和GSM的降解效能及相关影响因素.结果表明,γ-Al2O3催化臭氧氧化技术可以有效地降解天然水体中的嗅味物质,其降解能力随着天然水水质不同而有差异.同时γ-Al2O3催化臭氧氧化较单独臭氧氧化可以更有效地降低水体中有机物的相对分子质量.在两种天然水体中臭氧的衰减过程有所不同,催化臭氧过程中产生的羟基自由基显著高于臭氧氧化过程.γ-Al2O3的加入可以显著提高臭氧对水中典型嗅味物质的去除能力,同时水体中的天然本底物质对臭氧氧化和催化臭氧氧化过程有显著影响.  相似文献   

18.
厌氧发酵是处理工业废水的关键技术之一。本文从污水处理的条件及目标出发,设计了一种有机污水处理方案,对其工艺中的加药单元、厌氧反应单元、净水单元、沼气处理单元的机理和流程分别做了详细介绍。特别是对其核心单元—厌氧反应器提供了结构和原理简图。经过该工艺处理后CODCr≤500 mg/L;BOD5≤280 mg/L;为了达到国家要求的排放标准,介绍了CASS工艺和MBR法两种后续工艺,并将它们与氧化沟法和活性污泥法进行了比较。  相似文献   

19.
江汉油区许多油田已进入高含水开采期,目前全油区综合含水达83%,部分老油田含水已达97%。在原油处理中大量的原油含水吸收了大部分热量和破乳剂量,造成了能量和化学剂的极大浪费。根据以上情况,进行了两级旋流分离器预脱水现场应用,一级进行预脱水,二级对一级脱出的水进行除油处理。试验后,在马王庙油田马56站一级脱出总液量的50%以上,二级除油后污水含油在100mg/L以下。  相似文献   

20.
以聚合氯化铝(PAC)为混凝剂,通过烧杯试验研究了高锰酸盐复合药剂预氧化强化去除黄浦江水中微量天然有机物和浊度的效果.研究结果表明:投加高锰酸盐复合药剂进行预氧化可以显著提高有机物和浊度的去除效率,相同混凝剂投加量情况下,UV254和CODMn的去除率可提高约6%-9%;在PAC投加量为6-10 mg/L时,出水浊度均小于1 NTU,出水CODMn为2.27-2.15 mg/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号