首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Ti3AlC2 has the properties of ceramics and metals. These excellent properties indicate that Ti3AlC2 is a very promising material to extensive applications. Ti3AlC2 ceramic material was prepared by mechanical alloying. The effects of milling time and sintering temperature on the fracture, microstructure and mechanical properties of Ti3AlC2 ceramic material were analyzed by laser particle analyzer, X-ray diffraction, and scanning electron microscopy. The experimental results showed that Ti3AlC2 had the best comprehensive properties after the composite powder was milled for 3 h and sintered at 1630°C for 2 h. The relative density, bending strength, and hardness of the sample reached 92.23%, 345.2 MPa, and HRA 34.1, respectively. The fracture surface indicated that the fracture of the material belonged to ductile rapture.  相似文献   

2.
The sintering characteristics, microstructure, and mechanical properties of ultrafine WC-12%Co-0.2%VC/0.5%Cr3C2 cemented carbides were investigated. Dilatometric and differential thermal analyses (DTA) indicate that the compacts start to shrink at 600°C, the shrinkage rate peak is at 1190°C, and the liquid formation temperature is lower than the W-C-Co eutectic temperature (1330°C). Microstructure analysis results show that the cemented carbides with fine and homogeneous microstructure were obtained when sintered at 1430°C. Continuous and discontinuous grain growth was suppressed due to the synergistic action of VC/Cr3C2. The transverse rupture strength (TRS) of the samples reaches 4286 MPa, with the hardness HRA 92.1. The fine and homogeneous microstructure, alloy strengthening, and different phase constitutions of binder in the cemented carbides result in high hardness and TRS. Continuous and discontinuous grain growth was observed in the cemented carbide sintered at 1450°C, which results in significant decreases of hardness and TRS. It indicates that VC/Cr3C2 additions in the cemented carbides can only suppress the grain growth at a certain temperature.  相似文献   

3.
Tb2TiO5 neutron absorber was synthesized by ball milling and sintering. Microstructure character of ball-milled Tb4O7-17.605%TiO2 (mass fraction, %) powders and sintered bulks was analyzed using XRD, SEM and TEM. The microhardness, coefficient of thermal expansion and thermal conductivity of sintered bulks were measured. The experiment results showed that the nanocrystalline solid solution was obtained during ball milling. After 96 h of ball milling, TiO2 was completely solved in Tb4O7 and the crystal size of Tb4O7 was up to 37 nm. The bulk materials prepared by cold isostatic pressing were sintered at 1300 °C. Tb2TiO5 bulks with an orthorhombic structure were obtained. The microhardness of sintered bulks, as well as the thermal conductivity, increased firstly with increasing ball milling time and then decreased. The coefficient of thermal expansion decreased initially and then increased with increasing ball milling time. For the sintered bulk with powder milled for 48 h, the highest values of both microhardness and thermal conductivity were observed, whereas the lowest coefficient of thermal expansion was exhibited. In addition, with increasing testing temperature, the thermal conductivity of sintered bulks initially fell and then rebounded while an opposite trend was found in the coefficient of thermal expansion.  相似文献   

4.
Nanostructured and conventional Al2O3-13wt.%TiO2 ceramic coatings were prepared by plasma spraying with nanostructured agglomerated and conventional powders, respectively. The microstructure and microhardness of the coatings were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and microhardness measurement. Meanwhile, the friction and wear behaviors were analyzed and compared using a ball-on-disk tribometer. The results show that the conventional coating has lamellar stacking characteristic and has some pores. However, the nanostructured coating shows a bimodal microstructure, which is composed of both fully melted regions and partially melted regions. According to the microstructural difference, the partially melted regions can be divided into liquid-phase sintered regions (a three-dimensional net or skeleton-like structure: Al2O3-rich submicron particles embedded in the TiO2-rich matrix) and solid-phase sintered regions (remained nanoparticles). The microstructural characteristics of the liquid-phase sintered region are formed due to the selective melting of TiO2 nanoparticles during plasma spraying. On the other hand, the TiO2 and Al2O3 nanoparticles of the solid-phase sintered regions are all unmelted during plasma spraying. Due to the existence of nanostructured microstructures, the nanostructured coating has a higher microhardness, a lower friction coefficient, and a better wear resistance than the conventional coating.  相似文献   

5.
The effect of CAl0.5W0.5(CAW) compound on the grain refinement of Mg-Al based alloys was investigated.The results show that CAW compound is an effective and active grain refiner.The grain size of binary Mg-Al alloys is more than 500 μm,and it is changed to about 110 μm with a 1 wt.% CAW addition.The hardness increased with the decease of grain size monotonously.The mechanical properties are improved by the addition.The fine grain size is mainly ascribed to the dispersed Al2CO particles,which are very potent nucleating substrates for Mg-Al alloys.The nucleation cores formed by chemical reaction directly are well-distributed in the matrix.  相似文献   

6.
The optimum parameters were determined for synthesizing ZrN-Si3N4 composite powder from zircon by carbothermal reduction-nitridation (CTRN) process. The samples were prepared by mixing the carbon black of an average particle size less than 30 μm and the zircon of 40 μm with C/ZrSiO4 mass ratios of 0.2, 0.3, 0.4, and 0.5. The prepared samples were subjected to the CTRN process at temperatures of 1673, 1723, 1753, and 1773 K for 6, 9, and 12 h. The CTRN process was conducted in an atmosphere-controlled tubular furnace in a nitrogen gas flow of 1.0 L/min. All the products were examined by X-ray powder diffraction to determine the transformation. The results showed that the proper transformation of ZrN-Si3N4 occurred at 1773 K for 12 h with a C/ZrSiO4 mass ratio of 0.4.  相似文献   

7.
Fe(OH)3 precursor sol was prepared by a sol-gel method. The precursor sol was dipped onto the absorbent cotton, and gel was formed on the absorbent cotton template after the volatilization of moisture. Fe2O3 microtubules were synthesized after the process of self-propagation or calcination. The phase, morphology, and particle diameter of the samples were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the magnetic properties of the samples were measured using a vibrating sample magnetometer (VSM). The external diameters of Fe2O3 microtubules ranged between 8 and 13 μm, and the wall thicknesses ranged between 0.5 and 2 μm. The type of the calcination method plays a significant role in developing the Fe2O3 phase and the variation in the magnetic properties in the sol-gel template complexing method. γ-Fe2O3 was synthesized by a self-propagation method. However, α-Fe2O3 was synthesized after calcination at 400°C for 2 h. The coercivity of the samples synthesized by calcination at 400°C for 2 h after self-propagation was found to increase significantly, thereby presenting hard magnetic properties.  相似文献   

8.
Nano-TiO2/Co4Sb11.7Te0.3 composites were prepared by mechanical alloying (MA) and cold isostatic pressing (CIP) process.The phase composition,microstructure,and thermoelectric properties were characterized.The diffraction spectra of all samples well corresponds to CoSb3 skutterudite diffraction plane.TiO2 agglomerates into irregular clusters.They locate at the grain boundaries or some are distributed on the surface of Co4Sb11.7Te0.3 particles.For composites with high TiO2 content (0.6% and 1.0% TiO2),the phonon scattering by TiO2 particle,pores,and small size grains can result in a remarkable reduction in thermal conductivity.The maximum value of ZT is 0.79 for sample with 0.6 wt.% TiO2 at 700 K,which is 11% higher than that of non-dispersed sample.  相似文献   

9.
Porous Y-doped (Ba,Sr)TiO3 ceramics were prepared by the spark plasma sintering of (Ba,Sr)TiO3 powders with different amounts of carbon black, and by subsequently burning out the carbon black acting as a pore precursor. The microstructure, PTCR and gas-sensing characteristics for porous Y-doped (Ba,Sr)TiO3 ceramics were investigated. Spark plasma sintered (Ba,Sr)TiO3 ceramics revealed a very fine microstructure containing submicron-sized grains with a cubic phase and revealed an increased porosity after the carbon black was burned out. As a result of reoxidation treatment, the grain size of the (Ba,Sr)TiO3 ceramics increased to a few μm and the cubic phase transformed into a tetragonal phase. The phase transformation of (Ba,Sr)TiO3 ceramics was affected by grain size. The PTCR jump in the (Ba,Sr)TiO3 ceramics prepared by adding 40 vol.% carbon black showed an excellent value of 4.72 × 106, which was ten times higher than the PTCR jump in (Ba,Sr)TiO3 ceramics. The electrical resistivity of the porous (Ba,Sr)TiO3 ceramics was recovered as the atmosphere changed from a reducing gas (N2) to an oxidizing gas (O2) under consecutive heating and cooling cycles.  相似文献   

10.
In this research, a composite comprising an intermetallic matrix and dispersed Al2O3 particles was processed. A mixture of TiO2 and Al was mechanically activated in the presence of a process control agent and/or without it, in a high-energy planetary ball mill. As a subsequent process, the sample was sintered at various temperatures. The phase composition and morphology of the samples were evaluated by XRD and SEM techniques, respectively. The thermal behavior of the samples milled for 8 h with PVA and/or without it, were also assessed by the DTA technique and compared with one another. The DTA results revealed that addition of PVA shifted the aluminothermic reduction of TiO2 to higher temperatures; therefore, final composite phases were developed at higher temperatures. The results also showed that addition of PVA during milling caused the final microstructure to coarsen. The XRD pattern of the sample sintered at 700 °C exhibits the existence of TiAl, Ti3Al, and Al2O3 phases. In the sample sintered at 850 °C, the remaining Ti3Al peak was attenuated and completely disappeared at 1000 °C.  相似文献   

11.
Y(NO3)3 and NH3·H2O were used as a raw materials,and nano-Y2O3 powder was successfully synthesized by a precipitation method.Employing TEOS as a raw material,SiO2 powder was successfully prepared by a alkoxide-hydrolysis method,and a Y2O3/SiO2 composite powder was obtained by coating.The Y2O3,SiO2,and Y2O3/SiO2 powders were characterized using X-ray diffraction(XRD),scanning electron microscopy(SEM),and Fourier transform infrared spectrophotometer(FT-IR);the Y2O3 and Y2O3/SiO2 powders were further examined ...  相似文献   

12.
Nanostructured skutterudite-related compound Fe0.25Ni0.25Co0.5Sb3 was synthesized by a solvothermal method using FeCl3, NiCl2, CoCl2, and SbCl3 as the precursors and NaBH4 as the reductant. The solvothermally synthesized powders consisted of fine granules with an average particle size of tens of nanometers. The bulk material was prepared by hot pressing the powders. Transport property measurements indicated a heavily doped semiconductor behavior with n-type conduction. The thermal conductivity is about 1.83 W·m−1·K−1 at room temperature and decreases to 1.57 W·m−1·K−1 at 673 K. The low thermal conductivity is attributed to small grain size and high porosity. A maximum dimensionless figure of merit of 0.15 is obtained at 673 K.  相似文献   

13.
The formation and decomposition of aluminum titanate (Al2TiO5, tialite) in feedstock powders and coatings of the binary Al2O3-TiO2 system are so far poorly understood. A commercial fused and crushed Al2O3-40%TiO2 powder was selected as the feedstock for the experimental series presented in this paper, as the composition is close to that of Al2TiO5. Part of that powder was heat-treated in air at 1150 and 1500 °C in order to modify the phase composition, while not influencing the particle size distribution and processability. The powders were analyzed by thermal analysis, XRD and FESEM including EDS of metallographically prepared cross sections. Only a maximum content of about 45 wt.% Al2TiO5 was possible to obtain with the heat treatment at 1500 °C due to inhomogeneous distribution of Al and Ti in the original powder. Coatings were prepared by plasma spraying using a TriplexPro-210 (Oerlikon Metco) with Ar-H2 and Ar-He plasma gas mixtures at plasma power levels of 41 and 48 kW. Coatings were studied by XRD, SEM including EDS linescans of metallographically prepared cross sections, and microhardness HV1. With the exception of the powder heat-treated at 1500 °C an Al2TiO5-Ti3O5 (tialite–anosovite) solid solution Al2?xTi1+xO5 instead of Al2TiO5 existed in the initial powder and the coatings.  相似文献   

14.
超细硬质合金中晶粒非均匀长大机理   总被引:2,自引:2,他引:0  
袁红梅 《硬质合金》2012,29(3):131-135,140
采用市售的粒度为0.8μm的WC粉末和粒度为1.6μm的Co粉制备了WC-10%Co超细硬质合金,通过金相显微镜﹑扫描电子显微镜观察了不同烧结温度下制备的试样WC晶粒形貌,对超细晶粒硬质合金非均匀长大现象及机理进行了研究。结果表明:粉末湿磨后的粗大颗粒在烧结过程中起晶核作用,是引起晶粒非均匀长大的关键因素。固相烧结时,烧结体中细小颗粒受到张力的作用发生旋转,当其取向与邻近的大颗粒取向一致时,形成共格界面,以粗大晶粒为核心以并合的方式非均匀长大;液相烧结时,细小晶粒溶解并优先地在大晶粒的某些低能量晶面如(0001)和(1010)面析出,引起晶粒异常长大。本研究中,当烧结温度达到1 410℃时,WC晶粒可异常长大为接近20μm的粗大晶粒。  相似文献   

15.
Al2O3-10TiC composites were synthesized by spark plasma sintering (SPS) process. Microstructural and mechanical properties of the composite reveal homogeneous distribution of the fine TiC particles in the matrix. The samples were produced with different sintering temperature, and it shows that the hardness and density gradually increases with increasing sintering temperature. Abrasion wear test result reveals that the composite sintered at 1500 °C shows high abrasion resistance (wt. loss ~ 0.016 g) and the lowest abrasion resistance was observed for the composite sample sintered at 1100 °C (wt. loss ~ 1.459 g). The profilometry surface roughness study shows that sample sintered at 1100 °C shows maximum roughness (Ra = 6.53 µm) compared to the sample sintered at 1500 °C (Ra = 0.66 µm) corroborating the abrasion wear test results.  相似文献   

16.
To fabricate an Al-V matrix composite reinforced with submicron-sized Al2O3 and AlxVy (Al3V, Al10V) phases, high energy mechanical milling (HEMM) and sintering were employed. By increasing the milling time, the size of mechanically milled powder was significantly reduced. In this study, the average powder size of 59 μm for Al, and 178 μm for V2O5 decreased with the formation of a new product, Al-Al2O3-AlxVy, with a size range from 1.3 μm to 2.6 μm formed by the in-situ combustion reaction during sintering of HEM milled Al and V2O5 composite powders. The in-situ reaction between Al and V2O5 during the HEMM and sintering transformed the Al2O3 and AlxVy (Al3V, Al10V) phases. Most of the reduced V reacted with excess the Al to form AlxVy (Al3V, Al10V) with very little V dissolved into Al matrix. By increasing the milling time and weight percentage of V2O5, the hardness of the Al-Al2O3-AlxVy composite sintered at 1173 K increased. The composite fabricated with the HEMM Al-20wt.%V2O5 composite powder and sintering at 1173 K for 2 h had the highest hardness.  相似文献   

17.
Magnesium powders were mechanically alloyed with SiO2 powder particles having different particle sizes using high-energy ball milling techniques under Ar atmosphere for 1 h. The powders were consolidated with cold pressing under 560 MPa. They were then sintered at 550°C for 45 min under Ar atmosphere. The composites obtained on the Mg-SiO2 system were investigated using the Archimedes principle, a differential scanning calorimeter, X-ray diffraction, optic microscopy, and scanning electron microscopy. For the mechanically alloyed powders, the solid-state reaction of the synthesis of Mg2Si and MgO progressed further during sintering of the materials. The results showed that the strengthening mechanisms were dependent on dispersion hardening of fine Mg2Si and MgO particulates dispersed homogeneously in the matrix.  相似文献   

18.
Core–shell nanostructured magnetic Fe3O4@SiO2 with particle size ranging from 3 nm to 40 nm has been synthesized via a facile precipitation method. Tetraethyl orthosilicate was employed as surfactant to prepare core–shell structures from Fe3O4 nanoparticles synthesized from pomegranate peel extract using a green method. X-ray diffraction analysis, Fourier-transform infrared and ultraviolet–visible (UV–Vis) spectroscopies, transmission electron microscopy, and scanning electron microscopy with energy-dispersive spectroscopy were employed to characterize the samples. The prepared Fe3O4 nanoparticles were approximately 12 nm in size, and the thickness of the SiO2 shell was?~?4 nm. Evaluation of the magnetic properties indicated lower saturation magnetization for Fe3O4@SiO2 powder (~?11.26 emu/g) compared with Fe3O4 powder (~?13.30 emu/g), supporting successful wrapping of the Fe3O4 nanoparticles by SiO2. As-prepared powders were deposited on carbon fibers (CFs) using electrophoretic deposition and their electrochemical behavior investigated. The rectangular-shaped cyclic voltagrams of Fe3O4@CF and Fe3O4@C@CF samples indicated electrochemical double-layer capacitor (EDLC) behavior. The higher specific capacitance of 477 F/g for Fe3O4@C@CF (at scan rate of 0.05 V/s in the potential range of ??1.13 to 0.45 V) compared with 205 F/g for Fe3O4@CF (at the same scan rate in the potential range of?~???1.04 to 0.24 V) makes the former a superior candidate for use in energy storage applications.  相似文献   

19.
Nanostructured Bi2Se3 and Sn0.5-Bi2Se3 were successfully synthesized by hydrothermal coreduction from SnCl2·H2O and the oxides of Bi and Se. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscope (FESEM). Bi2Se3 powders obtained at 180°C and 150°C consist of hexagonal flakes of 50–150 nm in side length and nanorods of 30–100 nm in diameter and more than 1 μm in length. The product obtained at 120°C is composed of thin irregular nanosheets with a size of 100–200 nm and several nanometers in thickness. The major phase of Sn0.5-Bi2Se3 synthesized at 180°C is similar to that of Bi2Se3. Sn0.5-Bi2Se3 powders are primarily nanorod structures, but small amount of powders demonstrate irregular morphologies.  相似文献   

20.
FeCrMoVTi x (x values represent the molar ratio, where x = 0, 0.5, 1.0, 1.5, and 2.0) high-entropy alloys were prepared by a vacuum arc melting method. The effects of Ti element on the microstructure and room-temperature mechanical properties of the as-cast FeCrMoVTi x alloys were investigated. The results show that the prepared alloys exhibited typical dendritic microstructure and the size of the microstructure became fine with increasing Ti content. The FeCrMoV alloy exhibited a single body-centered cubic structure (BCC1) and the alloys prepared with Ti element exhibited BCC1 + BCC2 mixed structure. The new BCC2 phase is considered as (Fe, Ti)-rich phase and was distributed in the dendrite region. With the increase of Ti content, the volume fraction of the BCC2 phase increased and its shape changed from a long strip to a network. For the FeCrMoV alloy, the fracture strength, plastic strain, and hardness reached as high as 2231 MPa, 28.2%, and 720 HV, respectively. The maximum hardness of 887 HV was obtained in the FeCrMoVTi alloy. However, the fracture strength, yield stress, and plastic strain of the alloys decreased continuously as Ti content increased. In the room-temperature compressive test, the alloys showed typical brittle fracture characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号