首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sn-filled and Te-doped CoSb3 skutterudites (SnxCo8Sb23.25Te0.75) were synthesized by the encapsulated induction melting process. Single δ-phase was successfully obtained by subsequent heat treatment at 823 K for 6 days. Structural characterizations were carried out through X-ray diffraction studies. Transport properties such as the Seebeck coefficient, electrical resistivity, thermal conductivity, carrier concentration and mobility were measured and analyzed. The unfilled Co8Sb23.25Te0.75 sample showed n-type conductivity from 300 K to 700K. However, the Sn-filled SnxCo8Sb23.25Te0.75 showed n-type conductivity for z=0.25 and 0.5, and p-type conductivity for z=1.0 and 1.5 from 300 K to 700 K. Thermal conductivity was reduced by the impurity-phonon scattering. The dimensionless figure of merit (ZT) was remarkably improved over that of untreated CoSb3. However, the ZT value decreased when filling with z≥1.0 because the conductivity type was changed from n-type to p-type, thereby allowing bipolar conduction. The details are discussed in terms of the two-band model and the bipolar thermoelectric effect.  相似文献   

2.
The C15 Laves phase with composition Tb0.2Pr0.8(Fe0.4Co0.6)1.93 was synthesized by mechanical alloying (MA) and subsequent annealing process. The structure and magnetic properties of Tb0.2Pr0.8(Fe0.4Co0.6)1.93 were investigated by means of X-ray diffraction (XRD), a vibrating sample magnetometer, and a standard strain technique. The effect of annealing on the structure and magnetic properties was studied. The analysis of XRD shows that the high Pr-content Tb0.2Pr0.8(Fe0.4Co0.6)1.93 alloy with the single phase of MgCu2-type structure can be successfully synthesized by MA method. The sample annealed at 450°C is found to have a coercivity of 196 kA/m at room temperature. An epoxy/Tb0.2Pr0.8(Fe0.4Co0.6)1.93 composite was produced by a cold isostatic pressing technique. A large magnetostriction of 400 ppm, at an applied magnetic field of 800 kA/m, was found for the composite. The epoxy-bonded Tb0.2Pr0.8(Fe0.4Co0.6)1.93 composite combines a high magnetostriction with a significant coercivity, which is a promising magnetostrictive material.  相似文献   

3.
0.144(K0.5Bi0.5)TiO3-0.85(Na0.5Bi0.5)TiO3-0.006BaTiO3(KBT-NBT-BT) lead-free piezoelectric ceramics were prepared using a conventional solid state method.The influence of Sb2O3 doping on the crystal phase,surface microstructure and properties of the KBT-NBT-BT lead-free piezoelectric ceramics were investigated using X-ray diffraction(XRD),scanning electron microscope(SEM) and other analytical methods.The results show that all compositions are of pure perovskite structure solid states.Sb2O3 doping does not influence the microstructure of KBT-NBT-BT lead-free piezoelectric ceramics obviously in the Sb2O3 doping range of 0.1-0.5 wt.%.Sb2O3 functions as a donor when doped small amount,while functions as a acceptor when doped large amount.The piezoelectric strain constant(d33) increases first and then decreases;the dielectric constant(ε3T3/ε0) and the dielectric loss(tanδ) decrease continuously when the amount of Sb2O3 dopant increases.When the doping amount of Sb2O3 is 0.1 wt.%,the KBT-NBT-BT piezoelectric ceramics with good comprehensive properties are obtained,whose d33,ε3T3/ε0 and tanδ are 147 pC/N,1510 and 4.2%,respectively.  相似文献   

4.
In this study, indium-filled CoSb3 skutterudite is synthesized via encapsulated induction melting and subsequent annealing at 823 K for six days, and the crystal structure, lattice constant, filler position, phase homogeneity and stability were investigated. All of the In-filled CoSb3 samples were n-type conducting samples. The temperature dependence of the electrical resistivity showed InzCo4Sb12 is a highly degenerate semiconducting material. The thermal conductivity was reduced considerably by In filling. The highest thermoelectric figure of merit value was achieved when the In filling fraction is 0.25. It was found that the ZT of the In-filled CoSb3 (InzCo4Sb12) was higher than that of the In-substituted CoSb3 (Co3.75In0.25Sb12 and Co4Sb11.75In0.25). This is mainly due to the lower thermal conductivity and higher Seebeck coefficient.  相似文献   

5.
The samples of La0.6Dy0.1Sr0.3MnO3/(Ag2O)x/2(x = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, 0.25, and 0.30) were prepared by using the solid-state reaction method.Their magnetic property, transport behavior, transport mechanism and magnetoresistance effect were studied through the measurements of magnetization-temperature(M-T) curves, ρ-T curves and the fitting of ρ-T curves.The results indicated that Ag could take part in the reaction when the doping amount is small.However, when the doping amount is compar...  相似文献   

6.
This paper is devoted to investigating the microstructure and thermoelectric properties of Yb-filled skutterudite Yb0.1Co4Sb12 under a cyclic thermal loading from room temperature to 773 K. The results indicate after 1000 cycles, the surface morphology changes dramatically, and clear grain boundaries appear on the surface of the sample. The grain sizes of the sample change little after 1000 cycles, and the main phase is still skutterudite; however, a trace amount of YbSb also exists. In addition, the electrical conductivity and thermal conductivity decrease distinctly after 1000 cycles, but the absolute value of the Seebeck coefficient increases a little. Consequently, the ZT value decreases slightly from 0.75 at 800 K before cycling to 0.69 after 1000 cycles. It indicates that the effect of the cyclic thermal loading on the ZT of the Yb0.1Co4Sb12 material is not distinct.  相似文献   

7.
In this study, the thermoelectric properties of 0.1 wt.% Cdl2-doped n-type Bi2Te2.7Sb0.3 compounds, fabrieated by SPS in a temperature range of 250°C to 350°C, were characterized. The density of the compounds was increased to approximately 100% of the theoretical density by carrying out consolidation at 350°C. The Seebeck coefficient, thermal conductivity, and electrical resistivity were dependent on a hydrogen reduction process and the sintering temperature. The Seebeck coefficient and the electrical resistivity increased with the reduction process. Also, electrical resistivity decreased and thermal conductivity increased with sintering temperature. The results suggest that carrier density and mobility vary according to the reduction process and sintering temperature. The highest figure of merit, 1.93×10−3 K−1, was obtained for the compound consolidated at 350°C for 2 min.  相似文献   

8.
The (La0.7Ca0.3MnO3)1x /(NiFe2O4) x (x = 0 to 0.09) composites were prepared using a conventional solid state reaction method. The structural, magnetic properties, and electrical properties of LCMO/NFO composites were investigated using X-ray diffraction, scanning electron microscopy, field cooled DC magnetization, and magnetoresistance (MR) measurements. The resistivity measured as a function temperature demonstrates that the pure LCMO and x = 0.01 samples display metal to semiconductor transitions. However, the composites of x > 0.03 samples clearly present the electrical behavior as an insulator/semiconductor type behavior. It was observed that the resistivity of the samples increased systemically with an increase of the NFO content. From the MR measurements, it was found that the MR effect is enhanced for x = 0.01 with a NFO composition. In all, the spin-polarized tunneling and the spin-dependent scattering may be beneficial for an improved low-field magnetoresistance effect. These phenomena can be explained by the segregation of a new phase related to NFO at the grain boundaries or surfaces of the LCMO grains.  相似文献   

9.
Nano TiO2/Fe3O4 composite particles with different molar ratios of TiO2 to Fe3O4 were prepared via sol-gel method. X-ray diffraction, transmission electron microscopy, and vibration sample magnetometry were used to characterize the TiO2/Fe3O4 particles. The photocatalytic activity of the particles was tested by degrading methyl blue solution under UV illumination (254 nm). The results indicate that with the content of TiO2 increasing, the photocatalytic activity of the composite particles enhances, while the magnetism of the particles decreases. When the molar ratio of TiO2 to Fe3O4 is about 8, both the photocatalytic activity and magnetism of the TiO2/Fe3O4 particles are relatively high, and their photocatalytic activity remains well after repeated use.  相似文献   

10.
The phases in the compounds (Gd1−x Ce x )Co2 with x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5 were investigated by X-ray diffraction, and the magnetocaloric effect for x = 0–0.4 was studied by magnetization measurements. The samples are almost single phase with a cubic MgCu2-type structure for x = 0–0.5. The magnetization decreases with an increase in Ce content. There is almost no magnetic transition for x = 0.5 at 100–350 K. The Curie temperature (T c) of the (Gd1−x Ce x )Co2 compounds with x from 0.1 to 0.4 are 350, 344, 340, and 338 K respectively. The maximum magnetic entropy change is 2.34 J·kg−1·K−1 when x = 0.3. The results of Arrott plots show that the magnetic phase transition is second-order magnetic phase transition in these compounds.  相似文献   

11.
Phase equilibria in the Tl2Te-Tl5Te3-Tl9TmTe6 section of the Tl-Tm-Te ternary system were experimentally studied by using the powder x-ray diffraction technique, differential thermal analysis, as well as microhardness measurements applied to equilibrated alloys. Several isopleth sections and isothermal section at 680 K, as well as projections of the liquidus and solidus surfaces, were constructed. The Tl5Te3-Tl9TmTe6 section is characterized by the formation of continuous series of solid solutions (δ-phase) with Tl5Te3 tetragonal structure, which penetrate deep into the concentration triangle and occupy more than 90% of its area. A narrow area of solid solutions (α-phase) based on Tl2Te was detected.  相似文献   

12.
Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 was prepared by wet chemical route. The phase, surface morphology, and electrochemical properties of the prepared powders were characterized by X-ray diffraction, scanning electron micrograph, and galvanostatic charge-discharge experiments. Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 has similar X-ray diffraction patterns as LiMn2O4. The corner and border of Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 particles are not as clear as the uncoated one. The two powders show similar values of lithium-ion diffusion coefficient. When cycled at room temperature and 55°C for 40 times at the charge-discharge rate of 0.2C, Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 shows the capacity retentions of 98.2% and 93.9%, respectively, which are considerably higher than the values of 85.4% and 79.1% for the uncoated one. Both the capacity retention differences between Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 and LiMn2O4 cycling at room temperature and 55°C become larger with the increase of charge-discharge rate. When the charge-discharge rate reaches 2C, the capacity retention of LATP-coated LiMn2O4 becomes 8.4% higher than the uncoated LiMn2O4 for room temperature cycling, and it becomes 11.1% higher than the latter when cycled at 55°C.  相似文献   

13.
Electrode degradation can affect the lifetime and safety of Ni-MH secondary batteries. This study examined the factors responsible for the degradation of metal hydride (MH) electrodes. The charge-discharge characteristics and cycle life of an MmNi3.9Co0.6Mn0.3Al0.2 (Mm: misch metal) type MH electrode were examined in a cell with a KOH electrolyte. After the charge-discharge cycles, the surface morphology of the electrodes was analyzed to monitor the extent of degradation. Electrochemical impedance spectroscopy provided information on the conductivity of the electrode. X-ray photon spectroscopy (XPS) was used to quantify the degradation of the electrode in terms of its composition. The MH electrodes degraded with cycling. This phenomenon was more prominent at higher C-rates and temperatures. The electrode degradation was attributed to the loss of active material from the current collector by the repeated absorption and desorption of hydrogen and the formation of an Al2O3 oxide layer on the electrode surface with cycling. In addition, the effects of the addition of Co nano and Y2O3 powder on the degradation of the MmNi3.9Co0.6Mn0.3Al0.2 electrode were examined. The addition of the Y2O3 and Co nano powder significantly improved the performance of the MH electrode by increasing the cycle life and initial activation rate.  相似文献   

14.
Fe-based nanocrystalline powder sheets with dielectric TiO2 powder additives were investigated to improve the characteristics of electromagnetic (EM) wave absorption. The amorphous ribbons of Fe73Si16B7Nb3Cu1 (at.%) alloys were prepared by a planar flow casting (PFC) process, and the ribbons were pulverized using an attrition mill. Fe-based flake powder crystallized at 550°C for 1h was mixed with a nano-sized and a micro-sized TiO2 powder. The powder mixtures were then tape-cast with binders to become EM wave-absorbing sheets. The absorbing properties of the fabricated sheet sample, such as complex permittivity and permeability, were measured by a network analyzer. The properties of EM wave absorption improved with the increase of TiO2 powder in the mixture. The mixture with micro-sized TiO2 powder was a little more effective in causing power loss of EM waves than the mixture with nano-sized TiO2 powder.  相似文献   

15.
Cr 2 O 3-coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode materials were synthesized by a novel method. The structure and electrochemical properties of prepared cathode materials were measured using X-ray diffraction (XRD), scanning electron microscopy (SEM), charge-discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The measured results indicate that surface coating with 1.0 wt% Cr 2 O 3 does not affect the LiNi 1/3 Co 1/3 Mn 1/3 O 2 crystal structure (α-NaFeO 2 ) of the cathode material compared to the pristine material, the surfaces of LiNi 1/3 Co 1/3 Mn 1/3 O 2 samples are covered with Cr 2 O 3 well, and the LiNi 1/3 Co 1/3 Mn 1/3 O 2 material coated with Cr 2 O 3 has better electrochemical performance under a high cutoff voltage of 4.5 V. Moreover, at room temperature, the initial discharging capacity of LiNi 1/3 Co 1/3 Mn 1/3 O 2 material coated with 1.0 wt.% Cr 2 O 3 at 0.5C reaches 169 mAh·g 1 and the capacity retention is 83.1% after 30 cycles, while that of the bare LiNi 1/3 Co 1/3 Mn 1/3 O 2 is only 160.8 mAh·g 1 and 72.5%. Finally, the coated samples are found to display the improved electrochemical performance, which is mainly attributed to the suppression of the charge-transfer resistance at the interface between the cathode and the electrolyte.  相似文献   

16.
The photoelectrochemical characteristics of plasma-sprayed porous TiO2, TiO2-5%ZnO, and TiO2-10%ZnO electrodes in 0.1 N NaOH solution were studied through a three-electrode cell system. The microstructure, morphology, and composition of the electrodes were analyzed using an electron probe surface roughness analyzer (ERA-8800FE), scanning electron microscopy, and x-ray diffraction. The results indicate that the sprayed electrodes have a porous microstructure, which is affected by the plasma spray parameters and composition of the powders. The TiO2-ZnO electrodes consist of anatase TiO2, rutile TiO2, and Zn2Ti3O8 phase. The photoresponse characteristics of the plasma-sprayed electrodes are comparable to those of single-crystal TiO2, but the breakdown voltage is close to 0.5 V (versus that of a saturated calomel electrode). The short-circuit photocurrent density (J SC) increases with a decrease of donor concentration, which was calculated according to the Gartner-Butler model. For the lowest donor concentration of a TiO2-5%ZnO electrode sprayed under an arc current of 600 A, the short-circuit J SC is approximately 0.4 mA/cm2 higher than that of the TiO2 electrodes under 30 mW/cm2 xenon light irradiation. The J SC increases linearly with light intensity. The original version of this paper was published as part of the DVS Proceedings: “Thermal Spray Solutions: Advances in Technology and Application,” International Thermal Spray Conference, Osaka, Japan, 10–12 May 2004, CD-Rom, DVS-Verlag GmbH, Düsseldorf, Germany.  相似文献   

17.
P-type Bi2?xSbxTe3:Cum (x = 1.5–1.7 and m = 0.002–0.003) solid solutions were synthesized using encapsulated melting and were consolidated using hot pressing. The effects of Sb substitution and Cu doping on the charge transport and thermoelectric properties were examined. The lattice constants decreased with increasing Sb and Cu contents. As the amount of Sb substitution and Cu doping was increased, the electrical conductivity increased, and the Seebeck coefficient decreased owing to the increase in the carrier concentration. All specimens exhibited degenerate semiconductor characteristics and positive Hall and Seebeck coefficients, indicating p-type conduction. The increased Sb substitution caused a shift in the onset temperature of the intrinsic transition and bipolar conduction to higher temperatures. The electronic thermal conductivity increased with increasing Sb and Cu contents owing to the increase in the carrier concentration, while the lattice thermal conductivity slightly decreased due to alloy scattering. A maximum figure of merit, ZTmax = 1.25, was achieved at 373 K for Bi0.4Sb1.6Te3:Cu0.003.  相似文献   

18.
Nanostructured skutterudite-related compound Fe0.25Ni0.25Co0.5Sb3 was synthesized by a solvothermal method using FeCl3, NiCl2, CoCl2, and SbCl3 as the precursors and NaBH4 as the reductant. The solvothermally synthesized powders consisted of fine granules with an average particle size of tens of nanometers. The bulk material was prepared by hot pressing the powders. Transport property measurements indicated a heavily doped semiconductor behavior with n-type conduction. The thermal conductivity is about 1.83 W·m−1·K−1 at room temperature and decreases to 1.57 W·m−1·K−1 at 673 K. The low thermal conductivity is attributed to small grain size and high porosity. A maximum dimensionless figure of merit of 0.15 is obtained at 673 K.  相似文献   

19.
Li1.3Al0.3Ti1.7(PO4)3 pellets sintered with different mole fractions of LiBO2 were prepared by sol-gel method. The structural identification, surface morphology, ionic conductivity, and activation energy of the pellets were studied by X-ray diffraction, scanning electron microscopy, and electrochemical impedance spectroscopy. The results show that all the Li1.3Al0.3Ti1.7(PO4)3 pellets sintered with different mole fractions of LiBO2 have similar X-ray diffraction patterns. The sintered pellet becomes denser and the boundary and corner of the particles become illegible with the increase of LiBO2. Among the Li1.3Al0.3Ti1.7(PO3)4 pellets sintered with different mole fractions of LiBO2, the one sintered with 1 mol% LiBO2 shows the highest ionic conductivity of 3.95×10−4 S.cm−1 and the lowest activation energy of 0.2469 eV.  相似文献   

20.
The electrochemical properties of spinel compound LiNi0.5Mn1.2Ti0.3O4 were investigated in this study.The chemicals LiAc·2H2O,Mn(Ac)2·2H2O,Ni(Ac)2·4H2O,and Ti(OCH3)4 were used to synthesize LiNi0.5Mn1.2Ti0.3O4 by a simple sol-gel method.The discharge capacity of the sample reached 134 mAh/g at a current rate of 0.1C.The first and fifth cycle voltammogram almost overlapped,which showed that the prepared sample LiNi0.5Mn1.2Ti0.3O4 had excellent good cycle performance.There were two oxidation peaks at 4.21 V and 4.86 V,and two reduction peaks at 4.55 V and 3.88 V in the cycle voltammogram,respectively.By electrochemical impedance spectroscopy and its fitted result,the lithium ion diffusion coefficient was measured to be approximately 7.76 × 10?11 cm2/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号