首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study is to characterize metallic elements associated with atmospheric particulate matter of total suspended particulate (TSP), fine particle (particle matter with aerodynamical diameter <2.5 microm, PM(2.5)), coarse particle (particle matter with aerodynamical diameter 2.5-10 microm, PM (2.5-10)) at the Taichung Harbor (TH) and WuChi Traffic (WT) sampling site of central Taiwan during March 2004 to February 2005. The result indicated the average total suspended particulate concentration in 1 year was 157.31 and 112.58 microg m(-3) at TH and WT sampling site, respectively. Fine particle (PM(2.5)) size was the dominant species at TH and WT sampling site. In TH sampling site, higher correlation coefficient was observed on total suspended particulates of metallic elements Fe and Zn. And in WT sampling site, higher correlation coefficients displayed on total suspended particulates of metallic elements Fe and Zn, Fe and Mn. Ambient airborne particle principal component analysis of metallic metals was used to identify the possible pollutant sources in this study. At the TH sampling site, 50.81% of the total variance of the data was observed in factor 1. Higher loading of Fe (0.86), Zn (0.79), Pb (0.76), and Mn (0.68) were contributed by traffic emission and the soil source. At the WT sampling site, factor 1 explained 53.74% of the total variance of the data and had high loading for Zn (0.86) and Cu (0.85), which were identified as industrial/traffic emission sources.  相似文献   

2.
为了解室内外空气颗粒物PM2.5和总悬浮颗粒物(TSP)的污染状况,自2008年3月24日~4月3日在西安交通大学学生办公室、教师办公室、化学实验室和室外同时采集PM2.5和TSP样品,对其质量浓度及无机水溶性离子组分(Na+、NH4+、K+、Mg2+、Ca2+、Cl-、NO3-和SO42-)进行了分析。结果表明,室内外PM2.5和TSP浓度都远远高于美国空气质量标准规定的35μg/m3。室内外颗粒物浓度具有相同的变化趋势,且室内总体上低于室外。室内PM2.5在TSP中所占比例在65%~85%,室外在40%左右。室内外TSP和PM2.5中二次污染离子SO42-、NO3-和NH4+占总离子质量的50%以上,主要富集在细颗粒中。NH4+、K+和Cl-在总离子中的比例均为室内大于室外,PM2.5中大于TSP。Ca2+、Mg2+主要富集在粗颗粒上,室外含量远远高于室内。  相似文献   

3.
PM(2.5) samples were collected in Shanghai at four sites with different typical land-uses. The sampling was done concurrently once per month from April 2004 to April 2005, and the ambient mass concentration, the elemental composition and the stable lead isotope ratios in these PM(2.5) samples were determined. The annual average concentrations of PM(2.5) samples at each site were 84+/-30, 65+/-20, 55+/-18, and 41+/-10 microg m(-3), respectively, indicating there were severe air pollution levels in Shanghai. The enrichment factor was calculated for each element and the comparison and discussion of elements with significant anthropogenic contributions between Shanghai and Tokyo suggested that the major source of PM(2.5) in Shanghai was not traffic-derived emissions, but the stationary industrial contribution emitted from coal use. Moreover, the analysis of stable lead isotope ratios revealed only a slight difference within the samples at the four sites which fell well within the scope of coal composition difference, further confirming that the contribution from stationary industrial emissions to atmospheric lead pollution of PM(2.5) was very substantial in Shanghai.  相似文献   

4.
Based on measurements of fine particulate matter (PM2.5, i.e., particles with an aerodynamic diameter of 2.5 microm or less) in January and August 2004, serious air pollution persists in Beijing. The chemical analysis included organic and elemental carbon, water-soluble ions, and elemental compositions. The positive matrix factorization (PMF) method was used to apportion the PM2.5 sources. The sources contributing dominantly to PM2.5 mass concentrations are coal combustion in winter and the secondary products in summer. Furthermore, the contributions from motor vehicles, road dusts and biomass burning could not be neglected. The products of biomass burning for winter heating in the area around Beijing could enter the urban area during quasi-quiescent weather conditions. In conclusion, some effective control measures were proposed to reduce the PM2.5 pollution in Beijing.  相似文献   

5.
The aims of this study are to examine the concentrations of PM10 and PM2.5 in areas within the Seoul Metropolitan Subway network and to provide fundamental data in order to protect respiratory health of subway workers and passengers from air pollutants. A total of 22 subway stations located on lines 1-4 were selected based on subway official's guidance. At these stations both subway worker areas (station offices, rest areas, ticket offices and driver compartments) and passengers areas (station precincts, subway carriages and platforms) were the sites used for measuring the levels of PM. The mean concentrations of PM10 and PM2.5 were relatively higher on platforms, inside subway carriages and in driver compartments than in the other areas monitored. The levels of PM10 and PM2.5 for station precincts and platforms exceeded the 24-h acceptable threshold limits of 150 microg/m3 for PM10 and 35 microg/m3 for PM2.5, which are regulated by the U.S. Environmental Protection Agency (EPA). However, levels measured in station and ticket offices fell below the respective threshold. The mean PM10 and PM2.5 concentrations on platforms located underground were significantly higher than those at ground level (p<0.05).  相似文献   

6.
Daily average PM(10) (particulate matter which passes through a size selective impactor inlet with a 50% efficiency cut-off at 10 microm aerodynamic diameter), TSP (total suspended particulate matter) and their chemical species mass concentrations were measured at residential and industrial sites of an urban region of Kolkata during November 2003-November 2004. Source apportionment using chemical mass balance model revealed that the most dominant source throughout the study period at residential site was coal combustion (42%), while vehicular emission (47%) dominates at industrial site to PM(10). Paved road, field burning and wood combustion contributed 21%, 7% and 1% at residential site, while coal combustion, metal industry and soil dust contributed 34%, 1% and 1% at industrial site, respectively, to PM(10) during the study period. The contributors to TSP included coal combustion (37%), soil dust (19%), road dust (17%) and diesel combustion (15%) at residential site, while soil dust (36%), coal combustion (17%), solid waste (17%), road dust (16%) and tyre wear (7%) at industrial site. Significant seasonal variations of the particulate matters have been observed during the study period. In the monitoring sites total carbon, organic carbon and iron were found to be the marker species of road dust, while organic carbon, total carbon, chloride and sulfate have been observed as the marker species of soil dust in TSP.  相似文献   

7.
于2006年3月—4月北京沙尘发生期间,监测了沙尘与非沙尘期间悬浮颗粒PM10和PM2.5质量浓度,分析了样品中无机水溶性离子和金属元素。结果显示:沙尘天气导致PM10和PM2.5质量浓度上升,粗颗粒物质量浓度明显上升,细颗粒物受到的影响相对较小。SO42-、NO3-和NH4+为PM10与PM2.5主要水溶性离子。沙尘与非沙尘期间SO42-、NO3-和NH4+浓度变化表现出不稳定性,可能与沙尘的强度和持续时间、来源有关,沙尘下来自于土壤源Ca2+和Mg2+浓度都显然提高。沙尘期间Sc、Ti、V、Cr、Mn、Co、Ni、Rb和Cs金属元素浓度高于非沙尘期间浓度,并且富集因子系数都小于10,说明主要来自于自然源,而Zn、Se、Cd、Pb和Bi这5种元素浓度随沙尘的侵入并没增加其含量,反而使浓度有所下降,富集因子和富集程度对比表明这些元素主要来自于当地污染源。  相似文献   

8.
Sixteen priority polycyclic aromatic (PAHs) in PM(2.5) and PM(2.5-10) samples collected from 20 sites in Beijing, China in December 2005 and January 2006 were analyzed to determine the composition, spatial distribution and sources. Total PAHs of PM(2.5) and PM(2.5-10) ranged from 5.2 to 1062.2 ng m(-3) and 7.6 to 759.7 ng m(-3), respectively, categorized as heavier pollution. Among five kind of functional zones involved, industrial center, commercial area and village were heavily polluted. The mean concentration of PAHs in PM(2.5) of 407 ng m(-3) was 1.67-fold of that in PM(2.5-10), which was relatively high compared to the previous studies (winter in 2001 and 2002). The most evident change was the increase of Flu, BbkF and InP, which are believed to be less harmful and related to the increasing use of clean energy. However, pollution distribution was spatially heterogeneous inside the city. The most polluted sites located in the southeast of the city. Unlike previous studies, fluoranthene was the most abundant component quantified, which could be associated with increasing use of natural gas as clean energy. Compositional analysis and principal component analysis (PCA) suggested that different kinds of combustion were the main source of the PAHs in PM, though contribution of coal was still evident.  相似文献   

9.
Airborne suspended particulate matter was collected on glass fibre filters in urban atmosphere of Islamabad, Pakistan, using high volume sampler. The particulate samples were analysed for 10 selected metals (Fe, Na, Zn, K, Pb, Mn, Cr, Ni, Co and Cd) by FAAS method. Maximum mean contribution was noted for Fe (1.761microg/m(3)), followed by Na (1.661microg/m(3)), Zn (1.021microg/m(3)), K (0.488microg/m(3)) and Pb (0.128microg/m(3)). The particle size determination on vol.% basis for nine fractions (PM(<1.0), PM(1.0-2.5), PM(2.5-5), PM(5-10), PM(10-15), PM(15-25), PM(25-50), PM(50-100) and PM(>100)) was carried out using Mastersizer. PM(5.0-10) were found to be most abundant in the local atmosphere followed by PM(2.5-5.0) and PM(15-25) while coarse/giant particles (PM(50-100) and PM(>100)) showed lower contribution. The trace metals were found to be mainly associated with smaller particulate fractions up to PM(10-15). Among the climatic parameters temperature has significant relationship with fine particles and airborne metal levels while relative humidity showed negative correlation. The source identification was carried out by principal component analysis and cluster analysis. Five metal sources were identified: industrial, vehicular emissions, metallurgical operations, garbage incineration and soil derived dust. The metal levels were also compared with those reported for other rural and urban parts around the world.  相似文献   

10.
Agricultural waste burning is performed after harvest periods in June and November in Taiwan. Typically, farmers use open burning to dispose of excess rice straw. PM(2.5) and PM(2.5-10) measurements were conducted at National Chung Hsing University in Taichung City using a dichotomous sampler. The sampling times were during straw burning periods after rice harvest during 2002-2005. Ionic species including SO(4)(2-), NO(3)(-), NH(4)(+), K(+), Ca(2+), Cl(-) and Na(+) and carbonaceous species (EC and OC) in PM(2.5) and PM(2.5-10) were analyzed. The results showed that the average PM(2.5) and PM(2.5-10) concentrations were 123.6 and 31.5 microg m(-3) during agricultural waste burning periods and 32.6 and 21.4 microg m(-3) during non-waste burning periods, respectively. The fine aerosol ionic species including Cl(-), K(+) and NO(3)(-) increased 11.0, 6.7 and 5.5 times during agricultural burning periods compared with periods when agricultural waste burning is not performed. K(+) was found mainly in the fine mode during agricultural burning. High nitrogen oxidation ratio was found during agricultural waste burning periods which might be caused by the conversion of Nitrogen dioxide (NO(2)) to NO(3)(-). It is concluded that agricultural waste burning with low dispersion often causes high PM(2.5) and gases pollutant events.  相似文献   

11.
Nowadays particle size and mass concentration measurements are the important parameter of the ambient air quality standards of several countries. The regulatory limits of mass concentration of particulate matter (PM) for the size classes of PM2.5 and PM10, i.e., particle sizes of less than or equal to 2.5 and 10 μm in aerodynamic diameter, respectively in air are defined on yearly and hourly time-weighted-average basis. However, these limits are different in different regulations of the countries. Both of the parameters relate with the human health, climate and other issues, therefore accurate and precise measurement of these parameters are very important. Despite this, so far not much work has progressed in national metrology institutes (NMIs) worldwide on calibration and traceability issue of PM measurements. In this paper in context of PM measurement traceability, we present systematically the (1) air quality regulation in different countries, (2) reference methods for size and mass measurements, (3) variation/error and limitations of PM measurements based on the current results in this study and previously published results, (4) current status of PM size and mass calibration facility, (5) expected uncertainty in PM measurements, (6) add-on uncertainty in other parameters of national ambient air quality standards due to PM measurements, (7) where does traceability of PM issue stand against other parameters of air quality standards and its impact on health and climate, (8) NMIs working on this issue, (9) status at Bureau International des Poids et Mesures (BIPM), France and (10) conclusion. The aim of this paper is to better understand the importance of international system of units (SI) traceability issue in PM measurements, so wherever and whenever it is measured, should be acceptable everywhere, and data should be comparable for improving air quality and thus the quality of life. Funding agencies should be aware of this issue, and accept the results from the principle investigators and team only when their results have the traceability link to SI. NMIs should make program to involve industries in gas and aerosol metrology work to fulfill the requirement of calibration and standards. The regulatory authorities/ministry should work together with NMIs to improve the data quality of ambient measurements. This will greatly help to better make the policies and decisions on the related impacts. These were also the ultimate goals of “one-day pre-AdMet workshop” organized at National Physical Laboratory, New Delhi, India on February 20th, 2013.  相似文献   

12.
利用辽宁中部沈阳、鞍山、抚顺和本溪4个城市2006年8月—2007年10月可吸入颗粒物PM10、PM2.5、PM1的监测资料及同步气象因子的监测资料,分析了其分布特征、污染水平及其与气象因子的关系。结果表明:受区域天气系统的影响,4个城市PM10、PM2.5的日均浓度变化趋势基本一致,具有区域分布特征;PM10超标率冬季最高,PM2.5超标率冬季最高,夏季7月份也较高;PM2.5日均浓度占PM10日均浓度的比例夏季或冬季最大,春季4、5月份最小;PM10、PM2.5和PM1之间有很好的相关性;PM10与风速、温度呈负相关,PM2.5和PM1与能见度、风速、温度呈负相关,与相对湿度成正相关。  相似文献   

13.
This study investigated the effects of meteorological conditions and spatial variations on the toxicity of polycyclic aromatic hydrocarbons (PAHs) in airborne PM(10) in Ulsan, the largest industrial city in Korea. Daily PM(10) samples were collected on quartz microfiber filters using high volume samplers located in a downtown area, a residential area and an industrial area of Ulsan during spring and summer sampling periods. Sixteen individual PAHs were extracted into a mixture solution of dichloromethane and n-hexane (1:1, v/v) in an ultrasonic bath and were analyzed using a high performance liquid chromatography system with an ultra-violet detector (HPLC-UVD). The average total PAH concentrations from the three representative sampling sites of Ulsan ranged from 16.15 to 57.12 ng/m(3) in spring and from 11.11 to 34.56 ng/m(3) in summer. The toxicity equivalent concentrations (TEQs) of the PAHs in PM(10) of Ulsan ranged from 1.82 to 13.1 ng/m(3), with an average level of 4.17 ng/m(3). The highest TEQs were found in the downtown area, which had an average value of 6.30 ng/m(3) in spring and 5.52 ng/m(3) in summer. BaP and DahA were identified as the major carcinogenic PAHs that contributed to 34.8 and 59.4% of the total carcinogenic potency of PAHs in PM(10) in Ulsan. The identified TEQs were highly correlated (r(2) = 0.73-0.90, p<0.01) with the total PAH concentrations for each area. The TEQs showed a significant correlation (p < 0.01) with the concentration of air pollutants, including PM(10), PM(2.5) and NO(2).  相似文献   

14.
以台湾中南部水稻作物区域为目标,探讨秋收稻草燃烧烟尘大气脱水醣类粒径分布成分特征;以改良离子层析仪解析3种大气悬浮粒子(PM2.5、PM10、总悬浮颗粒(TSP))大气脱水醣类成分浓度(左旋葡萄糖、甘露聚糖)与粒径分布,并探讨稻草燃烧对大气粒子的贡献率。结果显示,稻草燃烧期间大气(乡村/市郊)两种粒子(PM2.5与TSP)左旋葡萄糖浓度均大幅上升,两种粒子收成燃烧期间较非收成季节升高约5.5倍(较收成季节背景PM2.5与总悬浮颗粒分别高1.21倍与1.40倍)严重影响区域空气质量。市郊含左旋葡萄糖粒子分布以PM2.5细微粒为主(占TSP81%以上);乡村左旋葡萄糖粒径分布较广,PM2.5粒子占TSP56%左右,粗大粒子(PM>10)占总悬浮颗粒的35%。此外,结果显示稻草生物质燃烧对区域PM2.5粒子平均贡献率为12%,市郊稍高于乡村(乡村、市郊平均贡献率分别为10.5%、13.0%),显现稻草生物质燃烧对台湾中南部空气质量有严重影响。  相似文献   

15.
2009年北京市春季大气颗粒PM_(2.5)和黑碳浓度变化特征   总被引:6,自引:0,他引:6  
为了评价奥运会后车辆限行、施工减少等措施对北京市大气环境质量的影响,利用黑碳仪和颗粒物在线观测仪,于2009年4月26日—5月16日对北京市大气悬浮颗粒PM2.5质量浓度,2009年4月21日—5月21日对黑碳浓度实行连续观测,采用SPSS11.5和EXCEl2003对数据进行统计分析,获PM2.5和黑碳的日均值、小时均值和观测时段内小时均值的连续变化资料。结果表明:观测时段内PM2.5浓度日均值为(9.3±0.2)μg/m3,低于北京市以往同期记录,达到美国EPA的PM2.5推荐标准。黑碳浓度的日均值为(2319±18)ng/m3,低于我国其他城市和北京市历史记录。说明北京市实行的污染源控制手段收到了明显效果。PM2.5浓度呈现周变化趋势,日变化表现两个峰值。黑碳浓度日变化为一峰一谷,未出现以往研究的两个峰值,推测可能受晚间车辆和烹饪活动的影响,晚间峰值被次日升高趋势遮盖。  相似文献   

16.
The size distribution of polycyclic aromatic hydrocarbons (PAHs) in emission of a two-stroke carburetor motorcycle was studied. The exhaust gas from the test motorcycle was passed to a dilution tunnel and collected using a 10 cascade micro-orifice uniform deposit impactor (MOUDI) of 0.056-10 microm aerodynamic diameter fitted with aluminum substrates. All MOUDI substrates were analyzed for particulate mass and for PAHs by GC/MS. Most of the 21 analyzed PAHs have two significant modes that peak at <0.1 and 0.18-0.32 microm. For some PAHs, a third peak appears around 1.8 microm. MOUDI impactor samples show that 88.9% particulate and 89.6% PAH mass distributed smaller than 2.5 microm. Mass median diameters of PAHs are about 0.2 microm. Total benzo[a]pyrene toxic equivalency emission factor was 440+/-13.8 ng/km for the test motorcycle. An average of 90.3% of carcinogenicity is observed in particulate smaller than 1.0 microm. The results suggest that submicron particulates predominate in the exhaust from motorcycle and exhibit high carcinogenic potency for these particulate.  相似文献   

17.
介绍了细颗粒物PM2.5监测仪检测用国家一级标准物质(标物号:GBW13642~GBW13649)的研制方法。用球形度好的单分散交联聚苯乙烯微球作为标准物质候选物,采用可溯源至国家长度基准的测量方法(扫描电子显微镜和图像分析法)及密度测量等方法为标准物质定值;利用经典气溶胶动力学当量直径计算方法,对其空气动力学直径进行建模分析。实验验证:该标准物质适用于PM2.5监测仪切割特性的检测校准以及作为尘源用于PM2.5监测仪量值的检测与校准。  相似文献   

18.
Urbanization affects the quality of the air, which has drastically degraded in the past decades. Air quality level is determined by measures of several air pollutant concentrations. To create awareness among people, an automation system that forecasts the quality is needed. The COVID-19 pandemic and the restrictions it has imposed on anthropogenic activities have resulted in a drop in air pollution in various cities in India. The overall air quality index (AQI) at any particular time is given as the maximum band for any pollutant. PM2.5 is a fine particulate matter of a size less than 2.5 micrometers, the inhalation of which causes adverse effects in people suffering from acute respiratory syndrome and other cardiovascular diseases. PM2.5 is a crucial factor in deciding the overall AQI. The proposed forecasting model is designed to predict the annual PM2.5 and AQI. The forecasting models are designed using Seasonal Autoregressive Integrated Moving Average and Facebook’s Prophet Library through optimal hyperparameters for better prediction. An AQI category classification model is also presented using classical machine learning techniques. The experimental results confirm the substantial improvement in air quality and greater reduction in PM2.5 due to the lockdown imposed during the COVID-19 crisis.  相似文献   

19.
北京城区和远郊区大气细颗粒PM_(2.5)元素特征对比分析   总被引:4,自引:0,他引:4  
为了对比大气悬浮颗粒PM2.5及其所含元素在北京城区与远郊区的特征,在2007年不同季节和2008年北京奥运会期间进行了PM2.5的采样分析。结果表明:城区PM2.5和元素的浓度均高于郊区,元素浓度在城区与郊区具有不同的季节变化特征,春、冬季地壳元素浓度在城区与郊区都有所增加,在城区S元素和其它污染元素在秋、冬季最高,而郊区S元素浓度在夏季最高。污染元素的富集程度夏秋季高于春冬季,郊区高于城区,城、郊两地PM2.5中元素来源相似。雾霾天PM2.5及元素浓度在城区增加明显,奥运期间污染元素的质量分数较奥运前明显降低。  相似文献   

20.
Aerosol samples of PM(10) were collected during summer and winter 2003 at two different sites in the Messogia Basin northeast of Athens, to demonstrate the variations of heavy metals in PM(10) and examine their relationship with both gaseous pollutants and meteorological parameters. Estimated heavy metals during the experimental campaign were mercury (Hg), cadmium (Cd), lead (Pb), nickel (Ni) and arsenic (As). The average heavy metal concentrations for the first site (Spata) constituted 0.66-14.7ng/m(3) for the summer period and 0.14-19.5ng/m(3) for the winter period. At the second site (Koropi), the corresponding values varied between 0.89 and 13.3ng/m(3) and 0.16 and 24.7ng/m(3), respectively. PM(10) Hg, PM(10) Cd and PM(10) Ni contents showed regular daily variations, with higher mass percentages during the summer, indicating differences in local PM(10) sources for each season. On the contrary, PM(10) Pb presented higher mass percentages during the winter. Examination of the relationship between heavy metals and meteorological parameters indicated a higher correlation with temperature and relative humidity, especially for Pb. In addition, most of the heavy metals (apart from Hg) presented an expected correlation with nitrate oxides (NO(x)), PM(10) and ozone (O(3)). Higher correlations with both meteorological parameters and gaseous pollutants were observed during the winter experimental campaign. Maximum heavy metal concentrations at both sites were observed during days with NE or NNE prevailing winds during the summer campaign, while the winter period was characterized with maximums during days with W or WNW prevailing winds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号