首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supramolecular hydrogel is a fascinating polymeric material composed of three‐dimensional noncovalent networks with many outstanding properties, especially reversible relevant performances. A self‐healing supramolecular hydrogel of poly(vinyl alcohol)/graphite oxide, with reversible pH responsiveness and good thermal stability, was prepared. The morphology, functional group changes, swelling performance, thermal stability, rheological performance, and self‐healing property of the PVA/GO hydrogel were investigated. A probable mechanism between the components and potential applications were also examined in our study. The experimental results show that the PVA/GO hydrogel was not only self‐healable without external stimulus or addition of any healing agents, but also pH sensitive and with good thermal stability. Green ingredients (PVA and GO) and a simple synthesis method (a freezing/thawing treatment) may pose little threat to the environment and also promote the production of such hydrogels. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46143.  相似文献   

2.
Utilization of bionics to develop stimuli responsive polymers that can heal damage with excellent restorability is particularly attractive for a sustainable society. Herein, inspired by chameleons, a hierarchical structural design strategy is proposed and illustrated to fabricate a healable photochromic material based on a self‐healable polymeric matrix and a finely dispersed photochromic spirooxazine. The self‐healable polymeric matrix is fabricated via the integration of multiple hydrogen bonds (H bonds) and covalent cross‐links into a biomass‐derived elastomer. The dynamic nature and soft characteristics enable the as‐prepared elastomer superior extensibility as well as self‐healing ability, while the covalent cross‐links can assist the reassociation of ruptured H bonds. The representative elastomer exhibits an extensibility of 2600% and toughness of 42.76 MJ m?3. Furthermore, it shows good self‐healing ability with complete recovery of scratch as well as restoration against 1900% of elongation and 24.1 MJ m?3 of toughness after healing at 60 °C for 24 h. This combination of moderate toughness, good self‐healing ability, and smart photochromic property in biomass‐derived materials should largely improve their applicability, reliability, and sustainability in various materials and devices.  相似文献   

3.
A self‐healable hydrogel with recoverable self‐healing and mechanical properties is reported. The hydrogel (coded as ACSH) crosslinked by Schiff base linkage contains two polysaccharides of acrylamide‐modified chitosan (AMCS) and oxidized alginate (ADA). Self‐healing and mechanical properties are heavily influenced by the crosslinking time. The hydrogel crosslinked for 2 h possesses better mechanical and self‐healing properties than hydrogel crosslinked for 24 h. Macroscopic test shows that hydrogel without self‐healing ability can recover the self‐repair and mechanical properties by adjusting the pHs. The recovery of self‐healing and mechanical properties relies on the pH sensitivity of the Schiff base linkage. Adjusting the pH to acid, the Schiff base linkage becomes unstable and breaks. Regulating the pH to neutral, reconstruction of Schiff base linkage leads to recovery of the self‐repair and mechanical properties. The recoverable self‐healing property can be cycled once breakage and reconstruction of the Schiff base linkage can be conducted. In addition, this study demonstrates that the hydrogel can be remodeled into different shapes based on self‐healing property of the hydrogel. It is anticipated that this self‐healable hydrogel with recoverable self‐healing and mechanical properties may open a new way to investigate self‐healing hydrogel and find potential applications in different biomedical fields.  相似文献   

4.
The multifunctional double network (DN) soft hydrogels reported here are highly swellable and stretchable pH‐responsive smart hydrogel materials with sufficient strength and self‐healing properties. Such multifunctional hydrogels are achieved using double crosslinking structures with multiple physical and chemical crosslinks. They consist of a copolymer network of acrylamide (AM) and sodium acrylate (Na‐AA) and other reversible network of poly(vinyl alcohol)–borax complex. They were characterized by Fourier transform IR analysis and studied for their hydrogen bonding and ionic interaction. The degree of equilibrium swelling was observed to be as high as 5959% (at pH 7.0) for a hydrogel with AM/Na‐AA = 25/75 wt% in the network (GS‐6 sample). The highest degree of swelling was observed to be 6494% at pH 8.5. The maximum tensile strength was measured to be 1670, 580 and 130 kPa for a DN hydrogel (GS‐2 sample: AM/Na‐AA =75/25 wt% with 20, 40 and 60 wt% water content, respectively). The self‐healing efficiency was estimated to be 69% for such a hydrogel. These multifunctional DN hydrogels with amalgamation of many functional properties are unique in hydrogel materials and such materials may find applications in sensors, actuators, smart windows and biomedical applications. © 2018 Society of Chemical Industry  相似文献   

5.
It remains a challenge to develop tough hydrogels with recoverable or healable properties after damage. Herein, a new nanocomposite double‐network hydrogel (NC‐DN) consisting of first agar network and a homogeneous vinyl‐functionalized silica nanoparticles (VSNPs) macro‐crosslinked polyacrylamide (PAM) second network is reported. VSNPs are prepared via sol‐gel process using vinyltriethoxysilane as a silicon source. Then, Agar/PAM‐SiO2 NC‐DN hydrogels are fabricated by dual physically hydrogen bonds and VSNPs macro‐crosslinking. Under deformation, the reversible hydrogen bonds in agar network and PAM nanocomposite network successively break to dissipate energy and then recombine to recover the network, while VSNPs in the second network could effectively transfer stress to the network chains grafted on their surfaces and maintain the gel network. As a result, the optimal NC‐DN hydrogels exhibit ultrastretchable (fracture strain 7822%), super tough (fracture toughness 18.22 MJ m‐3, tensile strength 431 kPa), rapidly recoverable (≈92% toughness recovery after 5 min resting at room temperature), and self‐healable (can be stretched to 1331% after healing) properties. The newly designed Agar/PAM‐SiO2 NC‐DN hydrogels with tunable network structure and mechanical properties by multi‐bond crosslinking provide a new avenue to better understand the fundamental structure‐property relationship of DN hydrogels and broaden the current hydrogel research and applications.  相似文献   

6.
A dual cross‐linking design principle enables access to hydrogels with high strength, toughness, fast self‐recovery, and robust fatigue resistant properties. Imidazole (IMZ) containing random poly(acrylamide‐co‐vinylimidazole) based hydrogels are synthesized in the presence of Ni2+ ions with low density of chemical cross‐linking. The IMZ‐Ni2+ metal–ligand cross‐links act as sacrificial motifs to effectively dissipate energy during mechanical loading of the hydrogel. The hydrogel mechanical properties can be tuned by varying the mol% of vinylimidazole (VIMZ) in the copolymer and by changing the VIMZ/Ni2+ ratio. The resultant metallogels under optimal conditions (15 mol% VIMZ and VIMZ/Ni2+ = 2:1) show the best mechanical properties such as high tensile strength (750 kPa) and elastic modulus (190 kPa), combined with high fracture energy (1580 J m?2) and stretchability (800–900% strain). The hydrogels are pH responsive and the extent of energy dissipation can be drastically reduced by exposure to acidic pH. These hydrogels also exhibit excellent anti‐fatigue properties (complete recovery of dissipated energy within 10 min after ten successive loading–unloading cycles at 400% strain), high compressive strength without fracture (17 MPa at 96% strain), and self‐healing capability due to the reversible dissociation and re‐association of the metal ion mediated cross‐links.  相似文献   

7.
pH‐ and temperature‐responsive semi‐interpenetrating nanocomposite hydrogels (NC hydrogels) were prepared with surface‐functionalized graphene oxide (GO) as the crosslinker, N‐isopropylacrylamide (NIPAM) as the monomer, and chitosan (CS) as an additive. The effects of 3‐(trimethoxysilyl)propylmethacrylate‐modified GO sheets and CS content on various physical properties were investigated. Results show that PNIPAM/CS/GO hydrogels undergo a large volumetric change in response to temperature. Swelling ratios of PNIPAM/CS/GO hydrogels are much larger than those of the conventional organically crosslinked PNIPAM hydrogels. The deswelling test indicates that the deswelling rate was greatly enhanced by incorporating CS into the hydrogel network and using the surface‐functionalized GO as the crosslinker. The pH‐sensitivity of PNIPAM/CS/GO hydrogels is evident below their volume phase transition temperature. Moreover, the PNIPAM/CS/GO hydrogels have a much better mechanical property compared with traditional hydrogels even in a high water content of 90%. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41530.  相似文献   

8.
Development of artificial soft materials that have good mechanical performances and autonomous healing ability is a longstanding pursuit but remains challenging. This work reports a kind of highly flexible, tough, and self‐healable poly(acrylic acid)/Fe(III) (PAA/Fe(III)) hydrogels. The hydrogels are dually cross‐linked by triblock copolymer micelles and ionic interaction between Fe(III) and carboxyl groups. Due to the coexistence of these two cross‐linking points, the resulting PAA/Fe(III) hydrogels are tough and can be flexibly stretched, bent, knotted, and twisted. The hydrogels can withstand a deformation of 600% and an ultimate stress as high as 250 kPa. Moreover, the dynamic ionic interaction also endows the hydrogels self‐healing properties. By varying the ratio of Fe(III)/AA, a compromised healing efficiency of 73% and an ultimate stress of 200 kPa are obtained.

  相似文献   


9.
Composite hydrogels of graphitic carbon nitride nanosheets (CNNS) and polyacrylamide (PAM) with superior UV absorption and visible transparence capabilities are reported. CNNS is employed not only as a photocatalytic initiator to trigger the polymerization of acrylamide, but also as a cross‐linker to 3D connected PAM chains via hydrogen bonds. The obtained CNNS/PAM hydrogels are highly moldable for preparing various forms, and have good mechanical properties, self‐healing ability, and photo‐stability. Furthermore, the composite hydrogels have a wide spectral range for UV absorption compared to conventional UV protective materials. Besides the complete screening of UVB (280–315 nm) in sun radiation, the CNNS/PAM hydrogel film can also filter >95% UVA radiation (315–400 nm) by regulating the coating thickness, meanwhile retaining a high visible transmittance. Therefore, the CNNS/PAM hydrogels have potential applications for shielding UV radiation. Additionally, this strategy provides a common and facile route to fabricate functional composite hydrogels via photo‐induced polymerization.  相似文献   

10.
Hydrogels, especially the ones with self‐recovery and adhesive performances, have attracted more and more attention owing to their wide practical potential in the biomedical field involving cell delivery, wound filling, and tissue engineering. Tannic acid (TA), a nature‐derived gallol‐rich polyphenol, exhibits not only unique chelating properties with transition metal cations but also desirable anti‐oxidation properties and strong bonding capability to proteins and gelatin. Thus, taking advantage of the versatility of TA, a one‐pot method is proposed herein to produce TA‐modified gelatin hydrogels with the aid of NaIO4 under basic conditions. By changing the amount of NaIO4 used, the obtained hydrogels are covalently cross‐linked to different degrees and consequently exhibit diversity in their self‐healing and adhesive properties. The gelling time, viscoelasticity, and morphology of hydrogels are investigated, and when the feed molar ratio of NaIO4 to TA is adjusted to 15:1, the fabricated hydrogel shows optimum self‐healing efficiency of 73% and adhesive strength of 36 kPa. Additionally, considering the completely natural origin of TA and gelatin, this study offers an original way for the fabrication of biocompatible self‐healing and adhesive materials.  相似文献   

11.
A novel pH‐ and temperature‐dual responsive hydrogel was synthesized by inverse microemulsion polymerization, using itonic acid (IA) as pH‐responsive monomer, N‐isopropylacrylamide (NPAM) as thermo‐responsive monomer and acrylamide (AM) as the nonionic hydrophilic monomer. Factors affecting water and salt absorption, as well as swellability of the dual responsive hydrogels, such as IA/NPAM mass ratio and crosslinker amount, were investigated. pH‐ and temperature‐sensitivity and dynamic viscoelasticity behaviors of the dual responsive hydrogels were also studied. The dual responsive responsive hydrogels showed suitable water and salt absorbency, remarkable pH‐, and temperature‐sensitivity, adjustable swellability and enhanced viscoelastic behaviors under high stress. Water absorbency and pH‐sensitivity increased while salt absorbency and temperature‐ sensitivity decreased with increasing IA/NIPAM mass ratio. Both water absorbency and salt absorbency increased first with crosslinker amount increased to 0.2 wt %, and then decreased with increasing crosslinker amount. Temperature‐induced shrinkage range of the dual responsive hydrogels was higher and broader than that of the conventional poly(N‐isopropylacrylamide) hydrogel. TEM indicated that the as‐synthesized hydrogel particles were regular and spherical‐like in shape and had the mean particle size of 49nm in the range of 30–78 nm. FTIR indicated the structure of the dual responsive hydrogels. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42139.  相似文献   

12.
Despite recent significant progress in fabricating tough hydrogels, it is still a challenge to realize high strength, large stretchability, high toughness, rapid recoverability, and good self‐healing simultaneously in a single hydrogel. Herein, Laponite reinforced self‐cross‐linking poly(N‐hydroxyethyl acrylamide) (PHEAA) hydrogels (i.e., PHEAA/Laponite nanocomposite [NC] gels) with dual physically cross‐linked network structures, where PHEAA chains can be self‐cross‐linked by themselves and also cross‐linked by Laponite nanoplatelets, demonstrate integrated high performances. At optimal conditions, PHEAA/Laponite NC gels exhibit high tensile strength of 1.31 MPa, ultrahigh tensile strain of 52.23 mm mm?1, high toughness of 2238 J m?2, rapid self‐recoverability (toughness recovery of 79% and stiffness recovery of 74% at room temperature for 2 min recovery without any external stimuli), and good self‐healing properties (strain healing efficiency of 42%). The work provides a promising and simple strategy for the fabrication of dual physically cross‐linked NC gels with integrated high performances, and helps to expand the fundamentals and applications of NC gels.  相似文献   

13.
Collagen‐based hydrogels have gained significant popularity in biomedical applications; however, traditional collagen hydrogels are easily disabled for lack of self‐healing properties due to their non‐reversible bonds. Here, a self‐healing collagen‐based hydrogel has been developed based on dynamic network chemistry, consisting of dynamic imine linkages between collagen and dialdehyde guar gum, as well as diol‐borate ester bonds between guar gum and borax. In addition, macromolecular interactions amongst macromolecules are involved. The above‐mentioned interactions were validated by Fourier transform infrared spectroscopy, sodium dodecyl sulfate polyacrylamide gel electrophoresis and DSC. The as‐prepared collagen‐based hydrogels showed good injectability and rapid self‐healing capacity (within 3 min) as reflected from injection tests, optical microscope observations, rheological measurements, as well as self‐healing studies. In addition, the collagen‐based hydrogels showed accelerated wound‐healing properties. This study offers a facile strategy to endow self‐healing ability on collagen‐based hydrogels without any external stimulus, which show great application potential as wound dressings. © 2020 Society of Chemical Industry  相似文献   

14.
Hydrogels have been widely used as mild biomaterials due to their bio‐affinity, high drug loading capability and controllable release profiles. However, hydrogel‐based carriers are greatly limited for the delivery of hydrophobic payloads due to the lack of hydrophobic binding sites. Herein, nano‐liposome micelles were embedded in semi‐interpenetrating poly[(N‐isopropylacrylamide)‐co‐chitosan] (PNIPAAm‐co‐CS) and poly[(N‐isopropylacrylamide)‐co‐(sodium alginate)] (PNIPAAm‐co‐SA) hydrogels which were responsive to both temperature and pH, thereby establishing tunable nanocomposite hydrogel delivery systems. Nano‐micelles formed via the self‐assembly of phospholipid could serve as the link between hydrophobic drug and hydrophilic hydrogel due to their special amphiphilic structure. The results of transmission and scanning electron microscopies and infrared spectroscopy showed that the porous hydrogels were successfully fabricated and the liposomes encapsulated with baicalein could be well contained in the network. In addition, the experimental results of response release in vitro revealed that the smart hydrogels showed different degree of sensitiveness under different pH and temperature stimuli. The results of the study demonstrate that combining PNIPAAm‐co‐SA and PNIPAAm‐co‐CS hydrogels with liposomes encapsulated with hydrophobic drugs is a feasible method for hydrophobic drug delivery and have potential application prospects in the medical field. © 2018 Society of Chemical Industry  相似文献   

15.
In this article, polydopamine (PDA) is efficiently adhered on the surface of graphene oxide (GO) by mussel‐inspired chemistry. The obtained reduced GO/PDA (RGO@PDA) nanocomposites are used for catalyzing reversible coordination‐mediated polymerization under microwave radiation. Well‐defined and iodine‐terminated polyacrylonitrile‐co‐poly(n‐butyl acrylate) (PAN‐co‐PnBA) is successfully fabricated by using RGO@PDA nanocomposites as catalysts. Importantly, green and novel strategy of PAN‐co‐PnBA‐type self‐healing nanocomposite materials is further fabricated with RGO@PDA as additive after polymerization as catalyst in one‐pot. As a reinforcement agent, RGO@PDA can also improve the mechanical and self‐healing properties of hybrid materials, which opens up a novel and green methodology for the preparation of self‐healing hybrid materials.  相似文献   

16.
A series of novel nanocomposite hydrogels were prepared by a cross‐linking copolymerization method. Structural and morphological characterizations of the nanocomposite hydrogels revealed that a good compatibility exists between poly(acrylamide‐co‐sodium methacrylate) [P(AM‐co‐SMA)] and carboxyl‐functionalized carbon nanotubes (MWNTs–COOH). The P(AM‐co‐SMA)/MWNTs–COOH nanocomposite hydrogels with a suitable MWNTs–COOH loading exhibited better swelling capability, higher pH sensitivity, good reversibility, and repeatability, and rapid response to external pH stimuli, compared with the P(AM‐co‐SMA). The compression mechanical tests revealed that the nanocomposite hydrogel displayed excellent compressive strengths and elastic mechanical properties, with higher ultimate compressive stress, and meanwhile still retain a good recoverable strain in the presence of MWNTs–COOH. These excellent properties may primarily be attributed to effectively dispersing of a suitable MWNTs–COOH loading into the matrix of the polymers and formation of additional hydrogen bonds. The nanocomposite hydrogels were expected to find applications in drug controlled release and issue engineering. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

17.
In biological system, early detection and treatment at the same moment is highly required. For synthetic materials, it is demanding to develop materials that possess self‐reporting of early damage and self‐healing simultaneously. This dual function is achieved in this work by introducing an intelligent pH‐responsive coatings based on poly(divinylbenzene)‐graft‐poly(divinylbenzene‐co‐methacrylic acid) (PDVB‐graft‐P(DVB‐co‐AA)) core–shell microspheres as smart components of the polymer coatings for corrosion protection. The key component, synthesized PDVB‐graft‐P(DVB‐co‐AA) core–shell microspheres are porous and pH responsive. The porosity allows for encapsulation of the corrosion inhibitor of benzotriazole and the fluorescent probe, coumarin. Both loading capacities can be up to about 15 wt%. The polymeric coatings doped with the synthesized microspheres can adapt immediately to the varied variation in pH value from the electrochemical corrosion reaction and release active molecules on demand onto the damaged cracks of the coatings on metal surfaces. It leads simultaneously to the dual functions of self‐healing and self‐reporting. The corrosion area can be self‐reported in 6 h, while the substrate can be protected at least for 1 month in 3.5 wt% NaCl solution. These pH‐responsive materials with self‐reporting and self‐healing dual functions are highly expected to have a bright future due to their smart, long‐lasting, recyclable, and multifunctional properties.  相似文献   

18.
In this work, a novel PAA‐Fe3+‐Al3+ hydrogel with triple network structure (TN) was synthesized via bimetallic ions synergistic cross‐linking strategy. As‐synthesized samples were characterized by scanning electron microscope, Fourier transform infrared analysis, and X‐ray diffractometer. The relevant experiment results demonstrated that the hydrogel can rapidly self‐heal in ambient temperature without any external stimulus with 95% healing efficiency in 60 s. Simultaneously, the relatively rapid self‐healing of PAA‐Fe3+‐Al3+ polymer can be obtained through the coordination of metal ions with the ? COO? in PAA and the oxygen of agar in the TN hydrogel system. And the prepared hydrogels demonstrate excellent mechanical properties—high tensile strength (the tensile strain ≈ 1.011 mm/mm, tensile stress ≈ 0.34 MPa) and large elasticity (the elongation at break ≈ 74%). Especially, the antimicrobial activity of the novel hydrogel against Staphylococcus aureus and Escherichia coli bacteria was investigated using the inhibition zone method, showing remarkable antibacterial activity. POLYM. ENG. SCI., 59:919–927, 2019. © 2018 Society of Plastics Engineers  相似文献   

19.
Strength, toughness and self‐recoverability are among the most important properties of hydrogels for tissue‐engineering applications. Yet, it remains a challenge to achieve these desired properties from the synthesis of a single‐polymer hydrogel. Here, we report our one‐pot, a monomer‐polymerization approach to addressing the challenge by creating dual physically crosslinked hybrid networks, in particular, synergistic “soft and hard” polyacrylic acid‐Fe3+ hydrogels (SHPAAc‐Fe3+). Favorable mechanical properties achieved from such SHPAAc‐Fe3+ hydrogels included high tensile strength (about 1.08 MPa), large elongation at break (about 38 times), excellent work of extension (about 19 MJ m?3), and full self‐recoverability (100% recovery of initial properties within 15 min at 50°C and within 60 min in ambient conditions, respectively). In addition, the hydrogels exhibited good self‐healing capabilities at ambient conditions (about 40% tensile strength recovery without any external stimuli). This work demonstrates that dual physical crosslinking combining hydrophobic interaction and ionic association can be achieved in single‐polymer hydrogels with significantly improved mechanical performance but without sacrificing favorable properties. POLYM. ENG. SCI., 59:145–154, 2019. © 2018 Society of Plastics Engineers  相似文献   

20.
In this study, pH‐ and temperature‐responsive hydrogels based on linear sodium alginate (SA) and crosslinked poly(N‐isopropylacrylamide) (PNIPAAm) were prepared by semi‐interpenetrating network (semi‐IPN) technique. The dually responsive hydrogels were characterized by FTIR, DSC, and SEM, and their temperature‐ and pH‐responsive behaviors were investigated by measuring equilibrium swelling ratios and pulsatile swelling experiments. The results showed that these hydrogels underwent volume phase transition at around 33°C irrespective of the pH value of the medium, but their pH sensitivity was evident only below their volume phase transition temperature. Under basic conditions, the swelling ratios of SA/PNIPAAm semi‐IPN hydrogels were greater than that of pure PNIPAAm hydrogel and increased with increasing SA content incorporated into the hydrogels, but the case was inverse under acidic conditions. The pulsatile swelling experiments indicated that the higher the SA content in SA/PNIPAAm semi‐IPN hydrogels, the faster the response rate to both pH and temperature change. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1931–1940, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号