首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The numerical results from a finite element (FE) model often differ from the experimental results of real structures. FE model updating is often required to identify and correct the uncertain parameters of FE model and is usually posed as an optimisation problem. Setting up of an objective function, selecting updating parameters and using robust optimisation algorithm are three crucial steps in FE model updating. In this paper, a multiobjective optimisation technique is used to extremise two objective functions simultaneously which overcomes the difficulty of weighing the individual objective function of more objectives in conventional FE model updating procedure. Eigenfrequency residual and modal strain energy residual are used as two objective functions of the multiobjective optimisation. Only few updating parameters are selected on the basis of the prior knowledge of the dynamic behaviours of the structure and eigenfrequency sensitivity study. The proposed FE model updating procedure is first applied to the simulated simply supported beam. This case study shows that the methodology is robust with an effective detection of assumed damaged elements. The procedure is then successfully applied to the updating of a precast continuous box girder bridge that was tested on field under operational conditions.  相似文献   

2.
In the traditional finite element (FE) model updating, translational responses, such as acceleration, have generally been employed to identify the structural properties. However, the boundary conditions of a structure are associated with both translational and rotational DOFs. Thus, the combinational measurement of translational and rotational responses (e.g., angular velocity) would increase accuracy of FE model updating of structures, especially in identifying their boundary conditions. This paper proposes data fusion of translational and rotational responses for improved system identification using FE model updating technique. In the proposed method, the accelerometers and gyroscopes are installed in between and near the supports of a structure, respectively, and FE model updating is carried out using the natural frequencies, the translational mode shapes obtained from accelerations, and the rotational mode shapes obtained from angular velocities. Numerical and experimental verifications are carried out on simply-supported beam structures. The verifications show that the proposed FE model updating strategy based on the data fusion results in more accurate assessment of both structural properties and boundary conditions than the traditional FE model updating using translational responses only.  相似文献   

3.
Most of finite element (FE) model updating techniques do not employ damping matrices and hence, cannot be used for accurate prediction of complex frequency response functions (FRFs) and complex mode shapes. In this paper, a detailed comparison of two approaches of obtaining damped FE model updating methods are evaluated with the objective that the FRFs obtained from damped updated FE models is able to predict the measured FRFs accurately. In the first method, damped updating FE model is obtained by complex parameter-based updating procedure, which is a single-step procedure. In the second method, damped updated model is obtained by the FE model updating with damping identification, which is a two-step procedure. In the first step, mass and stiffness matrices are updated and in the second step, damping matrix is identified using updated mass and stiffness matrices, which are obtained in the previous step. The effectiveness of both methods is evaluated by numerical examples as well as by actual experimental data. Firstly, a study is performed using a numerical simulation based on fixed–fixed beam structure with non-proportional viscous damping model. The numerical study is followed by a case involving actual measured data for the case of F-shaped test structure. The updated results have shown that the complex parameter-based FE model updating procedure gives better matching of complex FRFs with the experimental data.  相似文献   

4.
In finite element (FE) model updating, regularization methods are required to alter the ill-conditioned system of equations towards a well-conditioned one. The present study addresses the regularization parameter determination when implementing the Tikhonov regularization technique in output-error-based FE model updating. As the output-error-based FE model updating results in a nonlinear least-squares problem which requires iteration for solution, an adaptive strategy that allows varying value of the regularization parameter at different iteration steps is formulated, where the optimal regularization parameter at each iteration step is determined based on the computationally efficient minimum product criterion (MPC). The performance of MPC in output-error-based FE model updating is examined and compared with the commonly used L-curve method (LCM) and the generalized cross validation (GCV) through numerical studies of a truss bridge using noise-free and noise-corrupted modal data. It is shown that MPC is effective and robust in determining the regularization parameter compared with the other two methods, especially when noise-corrupted data are used. The adaptive strategy is more efficient than the fixed strategy that uses a constant value of the regularization parameter throughout the iteration process.  相似文献   

5.
基于矩阵逼近的模型修正方法的研究   总被引:5,自引:0,他引:5  
钱仲焱  冯培恩 《机械强度》2000,22(2):100-103
提出一种新的以试验振动和参数辨识的数据为参数,进行有限元分析模型修正的方法。该方法基于矩阵最佳逼近理论,运用Bayes估计原理来处理试验结果误差带来的试验模态可信度问题,求取分析模对试验获得的不完备模态的谱点的最佳逼近结果,最后获得质量阵的最小修正模型。  相似文献   

6.
Accuracy of numerical models based in finite elements (FE), extensively used for simulation of cutting processes, depends strongly on the identification of proper material parameters. Experimental identification of the constitutive law parameters for simulation of cutting processes involves unsolved problems such as the complex testing techniques or the difficulty to reproduce the stress triaxiality state during cutting. This work proposes a methodology for the inverse identification of the material parameters from cutting test. Two hybrid approaches are compared. One of them based on FE and artificial neural networks (ANN). The other one based on FE and local polynomial regression (LPR). Firstly, a FE model is validated with experimental data. Then, ANN and LPR are trained with FE simulations. Finally, the estimated ANN and LPR models are used for the inverse identification of material parameters. This identification is solved as an optimization problem. The FE/LPR approach shows good performance, outperforming the FE/ANN approach.  相似文献   

7.
This paper presents finite element (FE) model updating method for real bridge structure under operational condition using modal flexibility. The theoretical background of the updating procedure is presented. The case study of a simulated simply supported beam demonstrates an effectiveness of modal flexibility in objective function. This objective function is then implemented in case study of a real concrete-filled tubular arch bridge. The bridge was tested under operational condition. Followed by the three-dimensional FE modeling of the bridge, an eigenvalue sensitivity study is carried out to select the most sensitive parameters to the concerned modes. Guyan technique is used to the mass normalization of the mode shapes extracted from ambient modal test to calculate the modal flexibility. The updated FE model of the bridge is able to produce a sufficient improvement on modal parameters of the concerned modes, which is in close agreement with the experiment results and updated parameters still preserve the physical meaning in practice.  相似文献   

8.
The objective of the present investigations was updating of finite element (FE) models with local non-linearities, such as Coulomb friction, gaps, local plasticity. Parameters of non-linear elements in the input file of a FE code are updated by fitting simulated time history functions and the corresponding measurement data. The problem of estimating the initial values as well as the problem of increasing error between simulated and measured time history functions have been overcome by using the method of 'modal state observers'. State observers are known in control theory but are a new approach for FE analysis.The presented methods use least square algorithms with analytically and numerically calculated sensitivity matrices for the updating process. A program for updating on principle any parameter of the input file of a standard FE code is described. The only requirement is, that the parameters should have a significant influence on the measured time history function. All of the presented methods have been validated against test results.  相似文献   

9.
In the present paper, we describe an approach to identify the location and the extent of the damage introduced into the steel frame, using a two-step procedure. In the first step, the measured dynamic response of the original undamaged structure was used to generate a reference finite element (FE) model of the structure. The selected parameters were identified by means of a mathematical optimisation algorithm (‘updating procedure'), minimising an objective function containing the test/analyses differences of eigenfrequencies and mode shapes. The uncertain model parameters had to be chosen with care in order to retain the physical significance of the updated model. In the next step, the experimental modal data of the damaged structure were used to identify the extent of the damages. This was based on comparing the changes of stiffness parameters identified from the undamaged and the damaged structure. With the identified parameters, the FE model was able to reproduce the experimental data as close as possible and allowed the identification of the extent of the damage.  相似文献   

10.
Most of the model updating techniques do not employ damping matrices and hence cannot be used for accurate prediction of complex frequency response functions (FRFs) and complex mode shapes. In this paper, response function method (RFM) is extended to deal with the complexity of FRF by updating damping matrices along with mass and stiffness matrices. The effectiveness of the damped FE model updating procedure is demonstrated by actual laboratory experiments of an F-shaped test structure. The updated results have shown that the damped RFM model updating procedure can be used to derive accurate model of the system. This is illustrated by matching of the complex FRFs obtained from the updated model with the experimental data.  相似文献   

11.
This paper presents a new model updating method based on minimization of an index called Miscorrelation Index (MCI), which is introduced to localize the coordinates carrying error in a finite element (FE) model. MCI can be calculated from measured frequency response functions (FRFs) and dynamic stiffness matrix of the FE model for each coordinate as a function of frequency. Nonzero numerical values for MCI of a coordinate indicate errors in one or more elements of the system matrices corresponding to this coordinate. The sensitivity-driven model updating method presented in this study (MCI Sensitivity Method) is based on minimization of MCI. The application of the method is illustrated with four case studies. In the first and second examples a discrete system is considered, and computationally generated and polluted FRFs are used as pseudo-test data. In the third and fourth case studies, real test data is used and the performance of the method in practical applications is demonstrated on the benchmark structure built to simulate the dynamic behavior of an airplane, namely, GARTEUR SM-AG19 test bed. It is concluded that MCI Sensitivity Method yields successful results even when the measured responses of only a few coordinates are used, especially when miscorrelation is due to local errors.  相似文献   

12.
The aim of the present work is to develop updated FE models of a drilling machine using analytical and experimental results. These updated FE models have been used to predict the effect of structural dynamic modifications on vibration characteristics of the drilling machine. Two studies have been carried out on the machine. In the first study, modal tests have been carried out on a drilling machine using instrumented impact hammer. Modal identification has been done using global method of modal identification. For analytical FE modeling of the machine, a computer program has been developed. The results obtained using FEM, have been correlated with the experimental ones using mode shape comparison and MAC values. Analytical FE model has been updated, with the help of a program, which has been developed using direct methods of model updating. In the second study, modal testing has been carried out using random noise generator and modal exciter. Global method has been used for modal identification. Analytical FE modeling has been done using I-DEAS software. Correlation of FE results with the experimental ones has been carried out using FEMtools software. Updating of the analytical FE model has also been done using the above software, based on an indirect technique viz. sensitivity based parameter estimation technique. The updated FE models, obtained from both the studies have been used for structural dynamic modifications (SDM), for the purpose of dynamic design and the results of SDM predictions are seen to be reasonably satisfactory.  相似文献   

13.
Computational model updating techniques are used to adjust selected parameters of finite element models in order to make the models compatible with experimental data. This is done by minimizing the differences (residuals) of analytical and experimental data, for example, natural frequencies and mode shapes by numerical optimization procedures. For a long-time updating techniques have also been investigated with regard to their ability to localize and quantify structural damage. The success of such an approach is mainly governed by the quality of the damage model and its ability to describe the structural property changes due to damage in a physical meaningful way. Our experience has shown that due to unavoidable modelling simplifications and measurement errors the changes of the corresponding damage parameters do not always indicate structural modifications introduced by damage alone but indicate also the existence of other modelling uncertainties which may be distributed all over the structure. This means that there are two types of parameters which have to be distinguished: the damage parameters and the other parameters accounting for general modelling and test data uncertainties. Although these general parameters may be physically meaningless they are necessary to achieve a good fit of the test data and it might happen that they cannot be distinguished from the damage parameters. For complex industrial structures it is seldom possible to generate unique structural models covering all possible damage scenarios so that one has to expect, that the parameters introduced for describing the damage will not be fully consistent with the physical reality. Even then the change of such parameters identified from test data taken continuously or temporarily over the time may serve as a feature for structural health monitoring. It is well known that low-frequency modal test data or static response data are not very well suited for detecting and quantifying localized small size damage. Time domain response data from impact tests carry high-frequency information which usually is lost when experimental modal data are utilized for damage identification. Even so only little literature was found addressing the utilization of experimental time histories for model updating in conjunction with damage identification.In the present paper we summarize the methodology of computational model updating and report about our experience with damage identification using two different model updating techniques. The first is based on classical modal residuals (natural frequencies and mode shapes) which is extended to allow for simultaneous updating of two models, one for the initial undamaged structure and the second for the damaged structure using the test data of both states (multi-model updating). The second technique uses residuals composed of measured and analytical time histories. Time histories have the advantage of carrying high-frequency information which is beneficial for the detection of local damage and which usually is lost when modal residuals are used. Both techniques have been applied to the same beam structure consisting of two thin face sheets which were bonded together by an adhesive layer. It was the aim of this application to study the performance of the two techniques to localize and quantify the damage which was introduced locally in the adhesive layer.  相似文献   

14.
Thin wail component is utilized to absorb impact energy of a structure. However, the dynamic behavior of such thin-walled structure is highly non-linear with material, geometry and boundary non-linearity. A model updating and validation procedure is proposed to build accurate finite element model of a frame structure with a non-linear thin-walled component for dynamic analysis. Design of experiments (DOE) and principal component decomposition (PCD) approach are applied to extract dynamic feature from nonlinear impact response for correlation of impact test result and FE model of the non-linear structure. A strain-rate-dependent non-linear model updating method is then developed to build accurate FE model of the structure. Computer simulation and a real frame structure with a highly non-linear thin-walled component are employed to demonstrate the feasibility and effectiveness of the proposed approach.  相似文献   

15.
This paper considers the problem of finite element model (FEM) updating in the context of model selection. The FEM updating problem arises from the need to update the initial FE model that does not match the measured real system outputs. This inverse system identification-problem is made even more complex by the uncertainties in modeling some of the structural parameters. Such uncertainty often results in a number of competing forms of FE models being proposed which leads to lack of consensus in the field. A model can be formulated in a number of ways; by the number, the location and the form of the updating parameters. We propose the use of a Bayesian evidence statistic to help decide on the best model from any given set of models. This statistic uses the recently developed stochastic nested sampling algorithm whose by-product is the posterior samples of the updated model parameters. Two examples of real structures are each modeled by a number of competing finite element models. The individual model evidences are compared using the Bayes factor, which is the ratio of evidences. Jeffrey's scale is then used to determine the significance of the model differences obtained through the Bayes factor.  相似文献   

16.
针对结构有限元模型修正后仍可能存在模型偏差的问题,提出用待修正参数的不确定性来表征模型偏差的有限元模型修正方法。首先,基于响应面方法识别得到待修正参数的最优值,并通过计算结果与试验结果比较获得模型偏差;然后,基于响应面模型并结合灵敏度分析计算得到模型偏差对待修正参数的影响,从而得到考虑模型偏差后待修正参数的区间;最后,通过一个悬臂梁工程实例的模型修正,验证了笔者所提出方法的可行性。结果表明,考虑模型偏差的修正可以提高模型可靠性。  相似文献   

17.
For the mathematical representation of systems with epistemic uncertainties, arising, for example, from simplifications in the modeling procedure, models with fuzzy-valued parameters prove to be a suitable and promising approach. In practice, however, the determination of these parameters turns out to be a non-trivial problem. The identification procedure to appropriately update these parameters on the basis of a reference output (measurement or output of an advanced model) requires the solution of an inverse problem. Against this background, an inverse method for the computation of the fuzzy-valued parameters of a model with epistemic uncertainties is presented. This method stands out due to the fact that it only uses feedforward simulations of the model, based on the transformation method of fuzzy arithmetic, along with the reference output. An inversion of the system equations is not necessary. The advancement of the method presented in this paper consists of the identification of multiple input parameters based on a single reference output or measurement. An optimization is used to solve the resulting underdetermined problems by minimizing the uncertainty of the identified parameters. Regions where the identification procedure is reliable are determined by the computation of a feasibility criterion which is also based on the output data of the transformation method only. For a frequency response function of a mechanical system, this criterion allows a restriction of the identification process to some special range of frequency where its solution can be guaranteed. Finally, the practicability of the method is demonstrated by covering the measured output of a fluid-filled piping system by the corresponding uncertain FE model in a conservative way.  相似文献   

18.
基于频响函数相关性的灵敏度分析的有限元模型修正   总被引:12,自引:0,他引:12  
有限元模型的修正对机械结构的动态特性进行准确而可靠的预测是很重要的。利用试验测试和预测的有限元模型计算得到的频响函数(FRF),引入两种频响函数相关性的判定标准,提出基于频响相关函数的灵敏度分析的修正方程。数值实例研究结果表明,该方法利用少量的测量数据,即使测试数据含附加噪声,也可在很宽的频率范围内得到接近真实结构的有限元模型修正解。本文的方法可适用于大型复杂结构的模型修正。  相似文献   

19.
针对某型步兵战车整车刚柔耦合发射动力学中柔性车体有限元模型精度低的问题,基于模态试验数据,应用支持向量机响应面模型修正理论对车体结构有限元模型进行了修正。应用ANSYS有限元分析软件对车体结构进行模态分析,提取前6阶模态的固有频率和振型。为验证模型,设计了模态试验方案,实测了车体结构的模态信息。基于有限元模型数据与实测数据的相对误差,采用支持向量机响应面模型修正方法对车体结构弹性模量和密度进行修正。模型确认结果和动力学模型应用结果表明,修正后的车体有限元模型精度有了大幅度提高,能更加真实地反映车体的结构特征,为射击精度分析提供了准确的模型基础。  相似文献   

20.
Even though many innovative methods have been proposed more recently, traditional sensitivity-based methods are still widely used for model updating and damage identification. Most publications, however, seem to lack rigorous mathematical treatment of some important details. A first observation is that few authors recognize the issue as an inverse problem that needs regularization. Without regularization, inherent measurement errors can lead to completely unrealistic results. Most authors who do use regularization apply it intuitively but inconsistently. In this paper, the two best-known regularization schemes—Tikhonov regularization and truncated singular value decomposition—are applied consistently to the nonlinear updating problem. Line search and stopping criteria known from numerical optimization are adapted to the regularized problem. The optimal regularization parameter is determined by generalized cross-validation. Numerical simulations are used to demonstrate the effects of some commonly encountered inconsistencies and to prove the superior behavior of the proposed algorithm. This algorithm is then successfully applied to a laboratory model with experimental data. Good agreement with actual crack patterns is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号