首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
基于VC++6.0开发了一种单相流沸腾传热模型,通过引入空泡份额的概念将沸腾发生时的流场看作一个气液均匀混合的单相流,从数学上对该模型进行了描述并介绍了模型的数值实现方法。通过与实验结果的对比,表明模型适用于缸盖冷却水腔内沸腾传热计算。实验和计算结果还表明,压力对沸腾传热的影响较为明显。最后以226B型发动机水腔为工程应用对象,计算出了水腔内的空泡份额分布和水腔内的流度分布情况。  相似文献   

2.
基于VC 6.0开发了一种单相流沸腾传热模型,通过引入空泡份额的概念将沸腾发生时的流场看作一个气液均匀混合的单相流,从数学上对该模型进行了描述并介绍了模型的数值实现方法.通过与试验结果的对比,表明模型适用于缸盖冷却水腔内沸腾传热计算.试验和计算结果还表明,压力对沸腾传热的影响较为明显.最后以226B型发动机水腔为工程应用对象,计算出了水腔内的空泡份额分布和水腔内的流速分布情况.  相似文献   

3.
缸盖冷却水的单相流沸腾模型   总被引:5,自引:0,他引:5  
针对缸盖水腔内的冷却水流动沸腾传热计算,本文介绍了两种单相流沸腾模型。模型认为流动沸腾总传热量等于泡核沸腾和单相对流传热之和,其中泡核沸腾传热计算采用修正后的容积沸腾传热计算公式。BDL模型在Chen模型的基础上作了改进,考虑了冷却水局部流动参数及饱和状态的影响,适用于局部流动传热计算。  相似文献   

4.
针对缸盖水腔内的冷却水流动沸腾传热计算,本文介绍了两种单相流沸腾模型.模型认为流动沸腾总传热量等于泡核沸腾和单相对流传热之和,其中泡核沸腾传热计算采用修正后的容积沸腾传热计算公式.BDL模型在Chen模型的基础上作了改进,考虑了冷却水局部流动参数及饱和状态的影响,适用于局部流动传热计算.  相似文献   

5.
针对缸盖水腔内的冷却水流动沸腾传热计算,本文介绍了两种沸腾传热模型。模型认为流动沸腾总传热量等于泡核沸腾和单相流对流传热之和,介绍了常用的Chen模型,然后介绍了一种基于加权叠加方法基础上的。计算过冷流动沸腾传热的新模型Franz模型。  相似文献   

6.
介绍了2种适用于发动机冷却水传热计算的单相流沸腾模型Chen模型和BDL模型,通过对鼻梁区简化模型的数值模拟计算和实验结果对比分析,得到“BDL沸腾传热模型+SST湍流模型”的数学模型,计算误差更小.  相似文献   

7.
发动机冷却水腔内沸腾传热的模拟研究   总被引:1,自引:0,他引:1  
从单相流观点出发研究了两种计算过冷流动沸腾传热的思路:分区描述法和叠加计算法.提出了两个基于分区描述法的沸腾模型A和沸腾模型B;修正了基于叠加计算法的Chen沸腾模型和BDL沸腾模型中对流传热项的计算方法.利用这些沸腾模型进行了缸盖鼻梁区冷却水腔沸腾传热的数值模拟,并与试验结果进行了对比分析.结果表明:采用分区描述法和叠加计算法进行发动机冷却水腔内过冷流动沸腾传热计算均是可行且有效的方法;采用沸腾模型A和修正的BDL模型的预测精度比另两个沸腾模型要高;提高流速和过冷度均能强化沸腾传热的能力,提高压力后则在更高的壁面温度下才出现沸腾传热.  相似文献   

8.
通过车用天然气发动机,建立了包括冷却水腔内流动沸腾传热、气缸盖内固体导热及缸内进排气燃烧在内的多场耦合仿真系统.采用直接耦合算法进行气缸盖固体区域与冷却水腔流体区域流固耦合仿真,采用顺序映射的方式进行缸内燃气区域与流固区域多场耦合仿真.通过CFD软件中UDF功能嵌入合适的单相沸腾传热模型对缸盖水腔内传热进行分析计算,并在此基础上结合试验测量结果,对比分析发动机在不同冷却水温度与不同冷却系统压力下缸盖温度场变化趋势.研究表明:多场耦合仿真系统可以解决缸盖传热边界不易给定的难题,能够更真实准确地描述出缸盖复杂传热过程,且考虑沸腾传热因素后有助于提高在不同冷却条件下缸盖热关键区域温度场的计算精度.  相似文献   

9.
为了更加准确地研究发动机水套内冷却液流动传热问题,在Mixture多相流基础上建立了一套适用于发动机水套沸腾传热的气液两相流模型。以某直列4缸汽油机为研究对象,通过试验对汽油机第4缸火力面温度进行测量,两相流与传统单相流模拟结果对比表明两相流准确性更高。在两相流模拟结果基础上找出了汽油机水套壁面高温危险区,并基于发动机水套的设计要求提出了优化方案。模拟结果表明:优化后水套内冷却液的流动与冷却更加均匀,水套壁面温度明显降低,传热效果得到了提升。本研究可为以后的发动机沸腾传热研究和冷却水套设计提供参考。  相似文献   

10.
以某商用车直列6缸柴油机作为研究对象,基于缸内传热模型获得内燃机缸盖和缸套的燃气侧局部传热边界条件;基于均相流沸腾传热模型获得水侧传热边界;实现水侧、燃气侧边界与结构温度场计算的耦合,并判断水腔内沸腾传热的状态。结果表明:缸盖温度计算值与实测值吻合,缸盖最高温度位于缸盖底面两个排气门之间;排气门之间的燃气传热系数和燃气温度均处于较高值,缸内局部传热显著;在缸盖底面中心和排气门附近水腔内的冷却水处于部分发展泡核沸腾状态。  相似文献   

11.
低流速净蒸汽产生点模型预测过冷沸腾空泡率   总被引:2,自引:0,他引:2       下载免费PDF全文
孙奇  杨瑞昌 《热能动力工程》2004,19(2):124-126,174
空泡率是汽液两相流动的基本参数之一,而已有过冷沸腾空泡率计算方法研究以高质量流速为主,且大量文献报道现有空泡率模型难以适用于低流速过冷沸腾工况。本文基于低流速过冷沸腾净蒸汽产生点(NVG)理论模型,进一步建立了计算过冷沸腾空泡率的分布拟合模型。在较宽广的压力、质量流速、热流密度和流道尺寸范围内将模型计算结果与现有空泡率实验数据进行了比较,低流速工况下该模型与实验数据符合良好,表明该模型可适用于低流速过冷沸腾工况。  相似文献   

12.
This paper investigates the thermal and water balance as well as the electro-kinetics during the warm-up process of a Hydrogen/Oxygen high-temperature proton exchange membrane fuel cell (HT-PEMFC) from room temperature up to the desired temperature of 180 °C. The heating strategy involves the extraction of constant current from the fuel cell, while an external heating source with a constant heat input rate is applied at the end plates of the cell simultaneously. A simple analytical unsteady model is derived addressing the boiling phase changing phenomenon in the cathode catalyst layer (CCL) and cathode gas diffusion layer (CGDL) of the cathode that occurs when the temperature of the fuel cell reaches the boiling temperature of water. Parameters such as the heat input rate, extracted current, cathode pressure and cathode stoichiometric flow ratio are varied and their effects on the temperature, liquid water fraction and most importantly, the voltage profiles with respect to time, are explored. A comparison between other existing heating strategies using the model suggests that there is insignificant improvement in warm-up time when current is extracted from room temperature considering a single cell. However, considering the solution for a typical 1-kW stack suggests that reductions in warm-up time and energy consumption can be expected. In addition, the results show that boiling phase change is found to be a key factor that affects the level of water saturation in the porous media such as the CCL and CGDL during the warm-up process, when current is extracted from the start of the process i.e. room temperature. However, the energy consumption due to boiling phase change is found to be negligible as compared to external heating input rate. The parametric studies show that the variation of heat input rate, extracted current and cathode pressure have significant effect on the cell voltage that is strongly dominated by the liquid water fraction in the porous media. On the other hand, the variation of cathode stoichiometric flow ratio is found to have minimal effect on the output cell voltage. The parametric studies also indicate that boiling phase change is present for a significant period of time under typical operating conditions.  相似文献   

13.
A simultaneous visualization and measurement investigation has been carried out on flow boiling of water in parallel silicon microchannels of trapezoidal cross-section. Two sets of parallel microchannels, having hydraulic diameters of 158.8 and 82.8 μm, respectively, were used. The visualization study shows that once boiling heat transfer is established, two-phase flow and single-phase liquid flow appear alternatively with time in the microchannels. Large-amplitude/long-period fluctuations with time in wall temperatures, fluid temperatures, fluid pressures, and fluid mass flux, are measured for the first time during flow boiling in the microchannels. The fluctuation periods are found to be dependent on channel size, heat flux, and mass flux. The mechanism of the periodic boiling fluctuations in this experiment as well as their comparisons with other boiling fluctuations phenomena reported previously, are also discussed. The experimental results confirm that large-amplitude/long-period boiling fluctuations can be sustained when the fluctuations of pressure drop and mass flux have phase differences.With the aid of a microscope and high-speed video recording system, bubbly flow, slug flow, churn flow, and other peculiar flow patterns, are observed during two-phase flow periods in the microchannels.  相似文献   

14.
愈发严重的能源和环境问题要求内燃机的结构更加紧凑和复杂,导致缸盖等零部件所受的热负荷急剧增加,这对其内部冷却水腔提出了更高的换热要求。对流换热已不能满足苛刻的冷却要求,沸腾换热应运而生。据气泡动力学可知,汽化核心更倾向于分布在狭窄的凹坑处,因此在加热面上布置一定的表面形貌能够有效提高沸腾换热效果。文中设计4种形貌,并比较分析不同形貌的强化换热能力。结果表明:圆柱形凸起形貌强化沸腾换热和对流换热的效果最好,其次是圆柱形凹坑形貌,圆台形凹坑强化沸腾换热的效果好于半球形凹坑形貌,但强化对流换热的效果比半球形凹坑形貌差。不同凹坑形貌,汽化核心更倾向于分布在凹坑底部的狭窄区域,圆柱形凹坑底部狭窄区域的范围最广,有利于汽泡成核,圆台形凹坑次之,而半球形凹坑内部较为平整,不利于成核。  相似文献   

15.
In the advanced electronic packaging, low-pressure subcooled flow boiling has been applied in design of compact heat exchangers for the effective electronic cooling. Through literature survey it is noted that little studies were carried out on the low-pressure and low-flow velocity subcooled flow boiling. In this paper a one-dimensional, non-equilibrium two-fluid model is proposed. The model has been validated with existing data in literature for both vertical up-flow and down-flow configurations. The simulated results show that under low-flow velocity the single phase heat transfer fraction is insignificant in vapor generation rate. The predicted results indicate that buoyancy force plays an important role on the void fraction evolvement, especially under low-flow velocity in vertical down-flow configuration.  相似文献   

16.
To improve the design of modern industrial reboilers, accurate knowledge of boiling heat transfer coefficients is essential. In this study flow boiling heat transfer coefficients for binary and ternary mixtures of acetone, isopropanol and water were measured over a wide range of heat flux, subcooling, flow velocity and composition. The measurements cover the regimes of convective heat transfer, transitional boiling and fully developed subcooled flow boiling. Two models are presented for the prediction of flow boiling heat transfer coefficients. The first model is the combination of the Chen model with the Gorenflo correlation and the Schlünder model for single and multicomponent boiling, respectively. This model predicts flow boiling heat transfer coefficients with acceptable accuracy, but fails to predict the nucleate boiling fraction NBF reasonably well. The second model is based on the asymptotic addition of forced convective and nucleate boiling heat transfer coefficients. The benefit of this model is a further improvement in the accuracy of flow boiling heat transfer coefficient over the Chen type model, simplicity and the more realistic prediction of the nucleate boiling fraction NBF.  相似文献   

17.
Heat transfer coefficient and actual void fraction have been measured during upflow and downflow boiling of water in an annular channel. At the same values of pressure, mass flux, heat flux and flow quality significant difference of void fraction has been established in upflow and downflow. The upflow and downflow heat transfer coefficients did not deviate significantly from each other, if compared at identical values of pressure, mass flux, heat flux and actual void fraction.  相似文献   

18.
In order to develop a mechanistic model for the subcooled flow boiling process, the key issues which must be addressed are wall heat flux partitioning and interfacial (condensation) heat transfer. The sink term in the two-fluid models for void fraction prediction is provided by the condensation rate at the vapor-liquid interface. Low pressure subcooled flow boiling experiments, using water, were performed using a vertical flat plate heater to investigate the bubble collapse process. A high-speed CCD camera was used to record the bubble collapse in the bulk subcooled liquid. Based on the analyses of these digitized images, bubble collapse rates and the associated heat transfer rate were determined. The experimental data were in turn used to correlate the bubble collapse rate and the interfacial heat transfer rate. These correlations are functions of bubble Reynolds number, liquid Prandtl number, Jacob number, and Fourier number. The correlations account for both the effect of forced convection heat transfer and thickening of the thermal boundary layer as the vapor bubble condenses which in turn makes the condensation heat transfer time dependent. Comparison of the measured experimental data with those predicted from the correlations show that predictions are well within ±25% of the experimentally measured values. These correlations have also been compared with those available in the literature.  相似文献   

19.
High speed bubbly nozzle flow with heat, mass, and momentum interactions   总被引:1,自引:0,他引:1  
The characteristics of high speed bubbly flows through convergent-divergent nozzles are studied theoretically. A steady, one-dimensional flow is considered. The liquid phase is water, whereas the gaseous phase consists of a mixture of both non-condensable (air) and condensable (water vapor) components. The comprehensive physical model allows for momentum and thermal lags as well as mass transfer between the gaseous and liquid phases due to evaporation and condensation. The parametric analysis reveals that choked flow with supersonic speeds along the diverging section of the nozzle, similar to the behavior of a compressible gas flow, may be obtained under appropriate conditions. Effects of flow parameters such as wall friction, interphase heat transfer, initial bubble size and void fraction are demonstrated.  相似文献   

20.
Axial developments of the local void fraction, interfacial area concentration and bubble Sauter mean diameter were measured in subcooled boiling flow of water in a vertical internally heated annulus using the double-sensor conductivity probe technique. Measurements were performed under varying conditions of heat flux, inlet liquid velocity and inlet liquid temperature. A total of 10 data sets were acquired. Based on these measurements with the previous data obtained in the present test loop, the influence of flow condition on the profiles of local two-phase flow parameters was discussed. The measured average void fraction and interfacial area concentration were compared with the predictions by existing correlations for drift-flux parameters and interfacial area concentration. Also, the recently proposed bubble layer thickness model in subcooled boiling was evaluated for the measurement data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号