首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
高纯金属铬中氢会导致金属发生点蚀,因此需要严格控制其含量。称取0.05~0.20 g试样,以锡囊为助熔剂,控制分析功率为4 500 W,实现了脉冲加热惰气熔融-红外吸收法对块状和碎屑状两种形态高纯金属铬中氢含量的测定,方法可用于分析氢含量小于10μg/g的样品。采用单点校准法,以氢含量尽量接近或略高于未知试样中氢含量为原则,选用钢标准样品502-855绘制氢的校准曲线,并用其他钢标准样品502-416和501-529对校准曲线进行验证,结果表明,测定结果处于标准值的允许范围之内。方法的检出限为0.025μg/g,定量限为0.081μg/g。应用实验方法对块状和碎屑状高纯金属铬试样中的氢含量进行测定,测定结果与脉冲加热惰气熔融-热导法的结果一致,相对标准偏差(RSD,n=8)分别为1.2%和2.5%。在块状和碎屑状高纯金属铬试样中分别加入钢中氢标准样品进行加标回收试验,回收率为97%~106%。  相似文献   

2.
对惰性熔融-红外吸收光谱法测定铜基合金中氧氢含量进行了探讨和研究.通过样品表面清洁、称样量、助熔剂、释放功率等试验,确定最佳分析方案:称取0.3g样品,使用四氯化碳超声清洗5 min,晾干后,于氧氮氢联合测定仪4.8 kW分析功率测定,氧积分延迟时间选择为2s,氢积分延迟时间选择为08.将该方法应用于试样中0.0010...  相似文献   

3.
钨合金烧结过程引入微量氢对材料性能危害较大,实验利用惰气脉冲熔融红外吸收法测定钨合金中氢。对分析功率、称样量、助熔剂及其投入方式等进行优化,确定选用U型厚石墨坩埚,分析功率为4.0kW,称样量在0.20~0.50g之间,将镍助熔剂直接加入坩埚除气后(下浴料)再将被测钨合金试样投入坩埚中的方式,可有效降低由载气、石墨坩埚、炉膛空白,特别是助熔剂引入的干扰。以钢铁参考物质建立氢校准曲线,线性相关系数为0.9990;检出限为0.15μg/g。进行钨合金中氢的精密度试验,氢分析结果的相对标准偏差(n=6)均不超过8.4%,对氢含量较高的3种钨合金混合粉进行加标回收试验,回收率为94.4%~105.6%。  相似文献   

4.
研究了脉冲加热熔融热导法测定钛铁合金中氮含量的分析方法。对钛铁合金试样量和镍助熔剂的比例以及校准标样进行了选择。当试样量为0.05 g时,选择镍助熔剂加入量为1.0 g,可使试样中氮达到完全释放。采用和试样氮含量接近的钛铁和钢铁标准样品作为校准标样,都可以得到满意的分析结果。在选定的仪器分析条件下,用本法成功地测定了钛铁标样和试样中氮含量,相对标准偏差为1.2%~4.3%,分析值与认定值或化学湿法分析值相吻合。  相似文献   

5.
通过对助熔剂、称样量、分析功率和积分时间的研究,建立了惰气熔融-红外吸收法测定钽钨合金中氢含量的方法。实验结果表明,称取0.15 g钽钨合金样品,放入镍囊,投入脱气后的石墨套坩埚中,设置分析功率为4 000 W,积分时间为60 s,可实现惰气熔融-红外吸收法对钽钨合金中氢含量的测定。方法检出限为0.000 03%,定量限为0.000 1%。将实验方法应用于钽钨合金样品中氢含量的测定,结果的相对标准偏差(RSD,n=11)为16.5%。按照实验方法对另一钽钨合金样品中氢含量进行测定,并加入适量钛标样GBW(E)020187进行加标回收试验,得加标回收率为94%~101%。  相似文献   

6.
以纯铪粉为原料,采用真空烧结的方法,制备疏松、多孔且孔隙均匀的铪块,以能满足碘化的要求,防止铪粉在摩擦和碰撞的过程中易燃,不利于碘化装炉和出炉;同时高温烧结还可除去铪中的部分杂质,防止碘化过程发生中毒现象。利用SEM、电感耦合等离子体质谱分析法和EDS能谱分析等测试手段,主要研究了烧结温度对烧结后铪块的孔隙结构和成分变化的影响。实验结果表明:在真空度为6.7×10-3Pa、烧结温度1000℃(保温2 h)的条件下,所得试样的孔隙分布均匀,孔径大小基本一致,为150 nm,孔隙边缘光滑,形状由不规则倾向于圆形,且随温度的升高,粘结面不断扩大,逐渐形成烧结颈,颗粒边缘继续钝化,表面由粗糙变光滑,烧结颈由细变粗,大孔隙收缩,有的烧结颈出现熔化,小孔消失。烧结后的铪块中杂质元素W,Mo,Fe,O等含量不受温度的影响,H的含量随着烧结温度的升高而减少,由真空炉的压强分析知,氢含量的减少主要是由水分的蒸发和试样中的氢化铪高温分解产生氢气所造成的。  相似文献   

7.
朱跃进  李素娟  高鹏 《冶金分析》2016,36(12):18-25
探讨了样品前处理方法、空白和分析功率对脉冲热导法测定铝中氢的影响,并探索了实验中遇到的表面氢问题、热抽取氢失败的问题及二次样仍能测出氢的问题。实验表明:铝中氢分析要求现车新鲜表面样品,最好在气体分析实验室备有车床现车现分析,且增加超声波清洗程序,以有效清除样品制备过程中可能存在的微量污染,确保样品足够清洁;坩埚空白差值为0.01~0.04 μg/g,对于0.10 μg/g附近的超低含量氢的分析,需要单个扣除空白,对于0.19 μg/g以上较高含量氢的分析,用平均值扣空白亦可;为使每单个样品的分析功率落在最佳微小区域,每次取出坩埚时,均需使样品熔融后为亮球状态最佳,一般分析功率控制在1 100~1 300 kW之间。按照实验方法对铝合金标准样品进行测定,8次平行测定结果的相对标准偏差(RSD)为4.1%,测定值为(0.19±0.029) μg/g,比该标样证书给出的(0.19±0.04) μg/g更好,且每个点均不超差。方法可以准确测定低至0.09 μg/g铝中总氢或全氢。  相似文献   

8.
郭军霞  刘春海 《黄金学报》2000,2(3):163-166
讨论了用RH-40Q测氢仪分析铝及铝合金中氢含量时试样的制备方法以及表面氢分析时的加热时间和内部氢分析时的加热时间对分析结果的影响,给出了准确分析氢含量的试样制备方法和分析参数(试样加热时间)的确定方法。  相似文献   

9.
介绍了使用LECO RH-404氢测定仪进行铌锆丝中氢含量的测定。通过不同分析功率下钢标准物质、钛标准物质和铌锆丝试样的释放情况比对,确定了钛标准物质适用于校准仪器进行铌锆丝中氢含量的测定,并通过分析比对选定了最佳分析功率。对锡囊助熔法和锡片熔浴法进行比较,两者均可用于铌锆丝中氢含量的测定,试验中选择操作方便、空白较低且稳定的锡片作为助熔剂。通过精密度和加标回收试验,验证了该方法的精密度和准确度。  相似文献   

10.
讨论了用 RH-4 0 2测氢仪分析铝及铝合金中氢含量时试样的制备方法以及表面氢分析时的加热时间和内部氢分析时的加热时间对分析结果的影响 ,给出了准确分析氢含量的试样制备方法和分析参数 (试样加热时间 )的确定方法  相似文献   

11.
李洁  王占明 《冶金分析》2016,36(1):71-74
使用硝酸和氢氟酸溶解样品,以Zr 327.305 nm为分析谱线,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定铪合金中锆含量的分析方法。结果表明:铪质量浓度在100 μg/mL以下时,对锆的测定结果影响不显著,不需要使用基体匹配法绘制校准曲线;由于酸度对锆的测定结果有影响,待测试液与标准溶液系列的酸度应该保持一致,酸度大约为1.0 mol/L。锆的质量浓度在0.2~5.0 μg/mL范围内与发射强度呈线性,校准曲线的线性回归方程为y=39 966 x+176,相关系数r=0.999 7。方法中锆的检出限为0.001 5 μg/mL。实验方法用于铪合金样品中锆的分析,测定结果的相对标准偏差(RSD,n=6)小于1%,回收率为99%;同时与X射线荧光光谱法的测定结果进行比对,两种方法测定结果基本一致。  相似文献   

12.
通过微波加热,以8 mL HCl 和2 mL HF溶解铁精矿,并在6 mol/L HCl介质中以甲基异丁基甲酮萃取Fe3+,从而消除了大量Fe对Zr、Hf的光谱干扰,以Zr 339.198{99} nm光谱线和Hf 277.336{121} nm光谱线为分析线,在选定的仪器参数下以电感耦合等离子体原子发射光谱法(ICP-AES)测定了溶液中的Zr和Hf。结果表明,Zr和Hf的原子发射光谱强度与Zr和Hf的含量(分别以ZrO2和HfO2质量浓度计)在0~8.0 μg/mL范围内呈良好的线性关系,校准曲线相关系数r均为0.999 9,方法检出限分别为0.025、0.024 μg/mL。方法用于铁精矿实际样品分析,Zr和Hf测得结果的相对标准偏差(RSD,n=6)分别为0.98%~2.7%和1.5%~4.9%,加标回收率为94%~108%和93%~110%。  相似文献   

13.
汪磊  蒙益林  高帅  颜京  李燕昌 《冶金分析》2021,41(10):69-75
海绵铪对杂质元素的种类及含量要求严格,现有检测方法难以快速、准确地测定海绵铪中钨、镍、锰、钛、钒、钼,钴、铜等8种杂质元素。实验采用硝酸、氢氟酸溶解样品,采用基体匹配法绘制校准曲线并消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定海绵铪中钨、镍、锰、钛、钒、钼、钴、铜,方法可以测定海绵铪中0.001%~0.010%(质量分数,下同)钨、镍、锰、钛、钒、钼、钴、铜。各元素质量浓度在0.10~3.00 μg/mL范围内与其发射光谱强度呈良好的线性关系,线性相关系数大于0.999;各元素检出限不大于0.000 5%,定量限不大于0.001 5%。按照实验方法测定海绵铪中8种杂质元素,结果的相对标准偏差(RSD,n=8)为4.3%~9.8%,测定结果与电感耦合等离子体质谱法(ICP-MS)一致。  相似文献   

14.
镍基单晶高温合金中高含量的钨、钽、铪、铼等难熔元素,不仅对样品前处理造成阻碍,而且其元素间的光谱干扰会对测定结果造成严重影响。实验采用18mL盐酸-2mL硝酸-2mL氢氟酸溶解样品,再加入酒石酸可使样品溶液长期稳定存在。通过研究单晶高温合金中钨、钽、铪、铼的谱线干扰情况,选择W 207.911nm、Ta 240.063nm、Hf 282.022nm、Re 197.312nm作为分析谱线,采用基体匹配法配制标准溶液系列绘制校准曲线,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定镍基单晶高温合金中钨、钽、铪、铼。各元素在线性范围内校准曲线线性关系良好,相关系数均不小于0.9997;方法检出限为0.0001%~0.0008%。按照实验方法测定DD6单晶高温合金样品中钨、钽、铪、铼,结果的相对标准偏差(RSD,n=11)为1.0%~2.5%;加标回收率为96%~102%。  相似文献   

15.
钟华 《冶金分析》2016,36(5):12-15
针对钢中氧、氮、氢同时测定方法中氢测定结果较低温测氢法异常偏高的问题,进行了原因分析并提出了解决的办法。通过比较氢含量极低钢样的两种测定方法的氢结果,得出氧、氮、氢同时测定方法中石墨坩埚的氢杂质是造成上述问题的主要原因。为降低石墨坩埚中的氢杂质,实验提出将坩埚于450~480 ℃加热处理48 h用于日常分析,分析系统的氢空白值从0.69 μg/g 降低至0.12 μg/g,同时提高了方法的精密度,11次空白值的标准偏差为0.06 μg/g。按实验提出的方法对氢空白进行控制后,钢中氧、氮、氢同时测定方法中氢的分析结果与低温单独测氢法一致;钢中1.2~6.8 μg/g的氢测定结果,相对标准偏差(RSD,n=5)在1.0%~12.2%,满足炼钢炉前分析的要求。  相似文献   

16.
硼化铪(HfB_2)具有优异的抗氧化性能,作为超高温材料在耐磨涂层、航空领域具有极高的应用价值,而纯度是影响其应用的关键因素。本文采用烧结工艺制备HfB_2粉末,利用X射线衍射仪、扫描电子显微镜、X射线能谱仪等表征了粉末的结晶性能、形貌、元素分布等。研究了硼源、混料方式对HfB_2粉末结构的影响,测定C、O等杂质含量,通过差减法计算得HfB_2纯度。结果表明,碳化硼(B4C)作为硼源、混料采用机械混合的HfB_2性能最佳,X射线衍射中仅有HfB_2结晶峰,扫描电镜中均为HfB_2紧密团聚形貌,通过化学分析测定杂质含量,差减法计算HfB_2纯度可达到98.19%。  相似文献   

17.
应用4台仪器考察坩埚对高温合金中氧、氮及氢分析的影响,首先从空白实验开始,进口和国产石墨坩埚氧空白稳定在0.0Xμg/g,氮空白稳定在0.Xμg/g,可以满足高温合金中氧和氮的分析需求。国产石墨坩埚达到国际同类坩埚水平,可以满足实验针对坩埚应用研究的基本要求。实验表明:石墨套坩埚氧空白值最低,石墨套坩埚与单坩埚氮空白值相同,石英坩埚氢空白值最低。借助于钢中氧氮氢联测标样(502-863),比较石墨套坩埚和单坩埚在3台仪器上氧氮分析的差异,结果显示:用同一条内置标线进行计算,套坩埚对氧和氮分析结果比单坩埚低;按套坩埚和单坩埚自行建立的两条对应标线进行计算,两种坩埚对氧和氮分析结果基本一致。而对氢的分析检测,石墨单坩埚数据严重偏离而被禁用,套坩埚可以应用于较高含量氢(不小于0.6μg/g),钢标样中超低氢分析仅石英坩埚数据最佳。应用现有标钢已建立的标线和方法,3种坩埚、4台仪器实测高温合金样品中氧氮及氢含量,每组45点以上数据显示:高温合金实际样品中氧含量数据最分散,氮的测定值相对集中,不同坩埚之间氢的分析结果差别非常大。自带的高温合金内控样分析数据显示:石墨单坩埚氧氮测定值略高于套坩埚氧氮测定值,而3仪器间的差别很小。对高温合金中氢进行测定时,石墨坩埚与样品相互作用产生干扰,比石英坩埚数值虚高,特别是石墨单坩埚产生的干扰比石墨套坩埚更大,不建议使用。石英坩埚成为高温合金中超低氢分析的最佳选择。由于坩埚损坏和鼓泡导致的异常数据可以通过观察用后坩埚及时发现和剔除,不失为降低坩埚不良影响的有效手段之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号