首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对Mecanum四轮全向移动平台承载能力的局限性,提出了一种由八个Mecanum轮协同驱动控制的全向移动平台。在此基础上,建立了Mecanum八轮全向移动平台的运动学模型,推导了其运动学方程,确定了轮子的转速、转向与平台移动速度和方向的关系,同时运用ADAMs软件进行了仿真验证分析。仿真结果表明,该平台在+x方向,45度方向,绕自身转动方向以及沿45度方向同时绕自身转动方向上运动时,仿真所得平台速度与理论计算结果基本保持一致,验证了Mecanum八轮运动学方程的正确性。该运动学方程的建立,为Mecanum八轮全向移动平台的协同驱动控制奠定了理论基础。  相似文献   

2.
基于Mecanum轮的全方位移动平台可以实现零半径转向,具有工作时占地面积极小等特点。介绍了麦克纳姆轮的基本结构,为解决当前一体成型的Mecanum轮轮毂加工困难及成本高的问题,提出了一种新型的轮毂与辊子支撑架组合定位辊子轴的方式,建立了一种新型的全方位移动平台,拆装方便且有效地降低了制造成本。通过ADAMS软件,在理想空载与满载的情况下,完成对全方位移动平台的运动学建模及仿真分析。  相似文献   

3.
一种履带式全方位移动平台的设计与运动学分析   总被引:4,自引:0,他引:4  
针对轮式全方位移动平台在工程应用中存在振动大及路面适应性差等问题,基于Mecanum轮及传统履带的结构,提出全方位移动履带的结构,并分析全方位移动履带的运动机理;基于全方位移动履带,设计履带式全方位移动平台的布局结构,建立履带式全方位移动平台的逆运动学方程,并根据其判断平台满足全方位运动的必要条件;指出履带式全方位移动平台存在转向滑移问题,分析最大转向滑移率与平台结构参数之间的关系,并提出相应的平台设计准则;基于履带式全方位移动平台的虚拟样机,完成样机横向、斜向及中心转向的运动仿真,通过仿真结果验证履带式全方位移动平台可以实现全方位运动,同时验证平台逆运动学方程的正确性从而为平台的运动控制研究确立理论基础。  相似文献   

4.
《机械科学与技术》2017,(6):883-889
在分析Mecanum轮结构及其工作原理的基础上,基于矢量分析法建立了四轮全向移动平台一般形式的运动学模型;针对常规PID控制无法在线自整定及其响应实时性有待提高等问题,采用CMAC(Cerebellar model articulation controller)+PID联合控制策略,设计了全向移动平台嵌入式自适应控制器;进行了直流电机调速MATLAB仿真及实验对比分析,并通过多组典型实验对样机运动性能进行了测试。结果表明,该Mecanum轮全向移动平台运动学模型是合理的,CMAC+PID自适应控制器动态响应速度快、控制精度高、鲁棒性好,样机能在平面内较好地实现横/纵向平移、原地旋转及全方位运动,总体性能可满足工程应用要求。  相似文献   

5.
不平地面上Mecanum轮全方位系统运动学通用模型   总被引:3,自引:0,他引:3  
Mecanum轮运动系统无需转向轮能实现平面上全方位运动。具有特殊结构的Mecanum 轮全方位系统运行在不平地面上时,轮与地面接触状态是变化的,机体与地面不平度的耦合,使机体存在除平面运动外的附加姿态角运动,因此建立在平面上的三维运动学模型不能描述其运动学特征。为使系统能在具有局部不平度的结构化环境中运行,必须建立在不平地面条件下Mecanum轮系统的运动学模型。通过分类分析轮与地面的接触状态与接触图形,用矢量变换结合笛卡儿坐标变换方法分析给出Mecanum全方位系统在不平地面上运动的六维运动学模型,并分析系统在不平地面上实现全方位行走的条件。分析指出,该六维运动模型既适用于不平地面,也适用于平坦平面,因此该六维运动学模型是一种通用运动模型。  相似文献   

6.
为了在存在局部不平地面条件下应用Mecanum四轮全方位小车,总结出实际楼宇环境下存在的四类不平地面类型,分析给出对应于四种不平地面条件下Mecanum轮与地面的四种接触状态;针对四类接触状态,提出一种新的适应不平地面的Mecanum四轮全方位小车结构;用矢量及坐标变换方法解析了这种小车结构在不平地面条件下的运动学特性,分析给出了该小车的运动学条件及其适用范围;得出了该四轮小车在不平地面上运行的六维运动学模型。  相似文献   

7.
Mecanum四轮全方位系统的运动性能分析及结构形式优选   总被引:11,自引:0,他引:11  
设计合理的Mecanum四轮系统能够实现平面上3自由度全方位运动,但不是任意组合的Mecanum四轮系统都能实现全方位运动.为求得Mecanum四轮系统实现全方位运动的条件,分析给出一般结构形式的Mecanum四轮系统的运动学模型.通过解析系统速度逆雅可比矩阵的秩,结合系统的驱动性能和可控性要求,得到Mecanum四轮系统实现全方位运动的条件,即系统满足全方位运动的必要条件是逆雅可比矩阵满秩.对于一个具体的四轮系统.能否实现全方位运动还取决于轮结构参数及系统的结构布局形式.列举出六种具有代表性的四轮结构布局形式,通过对其逆运动学速度雅可比矩阵秩的计算,结合具体结构的分析,优选出四轮全方位运动系统的最佳结构布局形式.  相似文献   

8.
针对Mecanum轮式全方位移动平台存在路面适应性差等问题,提出了“全方位移动履带”的结构,并研制出一种履带式全方位移动平台;研究了履带式全方位移动平台的运动平顺性,分别建立了履带式和Mecanum轮式全方位移动平台的虚拟样机,主要完成了两种样机在B~F级不平路面的纵向及横向运动仿真试验;分析了两种样机纵向及横向运动的平顺性,结果表明,履带式全方位移动平台的运动平顺性优于Mecanum轮式全方位移动平台,并总结了路面等级对其纵向及横向运动平顺性的影响规律;在一段土路(相当于C级路面)上完成了平台的平顺性试验,试验结果验证了仿真结果的正确性;因此,履带式全方位移动平台可以改善Mecanum轮式全方位移动平台的路面适应性。  相似文献   

9.
全方位移动机器人具有平面运动的全部3个自由度,机动性好。介绍了技术较为成熟的Mecanum全方位轮的原理结构,分析了由4个Mecanum全方位轮组成的全向移动机构的运动原理以及轮体主要参数的定义,并且进行了基于ADAMS软件的运动仿真。  相似文献   

10.
全方位轮是全方位移动机器人移动的基础.分析了Mecanum轮的结构,采用切面与投影的方法计算出了辊子轮廓线的参数方程.采用SolidWorks API和VC++软件进行二次开发,论述了开发过程,快速生成辊子轮廓线,并最终实现参数化实体建模.参数化建模使得全方位轮的结构设计快速、简便并且通用,为今后的运动学仿真分析奠定了基础.  相似文献   

11.
基于Mecanum轮的全方位运动平台,可以在不组装任何转向机构的情况下,通过控制各个轮子的轮速和转向实现运动平台在各个方向上的移动。研究探讨了全方位运动平台的组装搭建,对其运动原理进行了分析,得出合理的控制方式,有利于全方位运动平台的实现。  相似文献   

12.
全方位移动机器人是指在地面可以进行前后、左右、原地回转等任意方向移动的机器人技术,Mecanum轮全方位移动机器人具有本体结构简单、控制性能优良、通过性好的全方位运动性能,在工程应用中得到越来越广泛关注。介绍了Mecanum轮机器人的全方位移动原理、Mecanum轮的结构设计与制造技术、精确运动控制技术、自动循迹及路径规划技术,并介绍了其在国内外军事与民用领域的典型工程运用。  相似文献   

13.
该文对Mecanum轮全向移动平台的运动特性进行分析,首先介绍了麦克纳姆轮的详细布局,然后分析了全向移动平台全向移动机构的运动原理,并建立相应运动学方程,最后利用SolidWorks完成全向移动平台的三维建模,并使用ADAMS软件对正常行驶时的前后、左右、原地旋转以及爬坡工况进行运动仿真分析,仿真分析结果验证了低温LNG全向移动平台设计的合理性。  相似文献   

14.
李敏  朱建江 《机械制造》2013,51(9):44-46
基于Mecanum轮的全方位平台具有平面运动的3个自由度,机动性好。对于其工业化应用驱动系统的全方位平台的动力学分析,滚动阻力因数是计算的必要参数。分析了Mecanum轮滚动阻力的产生原因及一般规律.介绍了一种测定Mecanum轮滚动阻力因数的方法,并且使用ADAMS软件进行了动力学仿真。  相似文献   

15.
全方位移动机器人具有平面运动的全部3个自由度,机动性好。介绍了技术较为成熟的Mecanum全方位轮的原理结构,分析了由4个Mecanum全方位轮组成的全向移动机构的运动原理以及轮体主要参数的定义,并且进行了基于ADAMS软件的运动仿真。  相似文献   

16.
针对传统移动平台无法满足在狭小空间内作业的问题,在对Mecanum轮结构及其工作原理进行分析的基础上,建立了其一般形式的运动学模型,并基于STM32和模糊PID自整定算法设计了一种嵌入式控制系统。由VB.NET编写了上位机软件,通过蓝牙无线控制平台的运动,并采用模糊PID自整定控制算法实现了闭环控制;经过多组典型实验,结合测距传感器,对该移动平台进行了运动性能测试。测试结果表明:该全向移动平台的运动学模型是合理的,控制系统运行可靠,样机能较好地实现平面内的全方位运动,模糊PID自整定控制算法控制精度高、实时性好,可满足工程应用要求。  相似文献   

17.
《机械传动》2016,(6):63-69
设计了一种具有平面内3自由度全方位移动,并且能够在45°陡坡范围内被动适应跨越轮子半径约4倍高度障碍的新型机器人。该机器人采用4个Mecanum驱动轮矩形布置,并分别安装在车体两侧双曲柄、弹簧耦合的越障机构上。给出了一般结构形式的Mecanum四轮系统的运动学模型,并得到其实现全方位运动的必要条件是逆雅可比矩阵满秩。优选出了四轮全方位运动系统的最佳结构布局形式。对越障机构进行了运动学建模以及结构参数的优化。最后,对整个机器人系统在平面内的直行、横行、原地转弯以及复杂地形环境下的越障等功能进行了虚拟样机系统仿真和实物样机功能测试。  相似文献   

18.
王宾  马超  温秉权 《机电工程》2013,(11):1358-1361,1378
为了实现在有限空间内对机器人的位置进行精确控制的目的,设计了Mecanum三轮全向移动平台。通过分析滚子的几何模型,建立了滚子轮廓面参数方程和轴截型曲线方程。根据滚子的参数模型得到了全向移动平台速度和Mecanum轮角速度之间的关系方程,完成了全向移动平台控制系统的设计。在此基础上制作了Mecmmm三轮全向移动平台,并进行了运动性能试验。Mecanum三轮全向移动平台可以实现3个互成120°的直线移动和绕自身中心旋转的正、反方向运动,在轮式移动机构中其全向移动能力具有明硅优势。研究结果表明:该移动平台运动方式灵活,能够在狭窄空间中实现精确定位、原地调整姿态和在二维平面上自由运动。  相似文献   

19.
Mecanum轮作为一种全方位行走轮在多领域广泛应用,针对Mecanum运动系统受限于平整光滑路面,提出一种拓展到类"V"形路面行走的新型变锥角Mecanum轮,该轮每个滚子分别对应安装于阵列球面四杆机构上,其周向阵列球面四杆机构具有公共输入轴,以同步驱动安装于连杆上对应的Mecanum轮滚子,实现滚子轴线偏置角变化,达到Mecanum轮锥角变化,增加Mecanum轮运动系统对"V"形地面行走适应性;通过建立球面四杆机构运动学模型,求解出球面四杆机构的输入输出方程,得到公共轴输入转动角度与滚子偏置角间映射关系;基于包络原理近似求得Mecanum轮可控锥角所对应的路面坡度。  相似文献   

20.
为了提高全向移动操作臂的控制精度,建立其运动学模型与动力学模型。首先,根据Mecanum轮的特性建立全向移动平台运动学模型,根据DH法则推导5自由度操作臂的运动学方程,并将操作臂基坐标与移动平台质心合而为一,推导出统一运动学方程;然后,在统一运动学模型的基础上,运用第二类拉格朗日方程,考虑移动平台和操作臂之间的耦合关系,考虑能量耗散问题,建立全向移动操作臂统一动力学模型;最后,依据设计搭建实验样机,并采用两种不同的转矩间接测量方法,在样机以不同运动方式情况下测量实时转矩,将之与由动力学方程算得的转矩计算值对比。结果表明,所建动力学模型正确可靠,为以后的运动控制提供了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号