首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 313 毫秒
1.
In this study, free‐volume effects on the thermal and mechanical properties of epoxy–SiO2 nanocomposites were investigated. SiO2 particles ranging from 15 nm to 2 µm were used, and the nature of the matrix–filler interphase was modified by surface grafting. Nanoparticles 15 nm in diameter yielded an increase in the glass‐transition temperature (Tg) of the composites up to 5 °C; at the same time, they increased the storage modulus (E′) from 2340 to 2725 MPa. Conversely, large particles markedly decreased both Tg and E′; this suggested the pivotal role of nanoparticle size on the final properties of the nanocomposite. The functionalization of SiO2 nanoparticles markedly improved their dispersion within the epoxy matrix. The positron annihilation lifetime spectroscopy results indicate that the free volume strongly depended on the interphase. These experimental findings obtained here could be extrapolated to industrially relevant nanocomposites and could provide a rationale for the comprehension of free‐volume effects on the thermal and mechanical properties of nanocomposite materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45216.  相似文献   

2.
The competing effects of glass transition temperature (Tg) and compatibility on the low temperature Izod impact toughness of styrene–acrylonitrile copolymer/acrylonitrile–styrene‐acrylate terpolymer (SAN/ASA, 75/25, w/w) blends were investigated by using a series of hydrogenated nitrile butadiene rubbers (HNBRs) with different acrylonitrile (AN) contents. The results showed that the HNBR with AN mass content ranging from 21% to 43% had good compatibility with polymer matrix and exhibited dramatic toughening effect at 25°C. Owing to their low Tgs, only the HNBRs (AN = 21% and 25%) remained favorable toughening effect at 0 and ?30°C, respectively. Furthermore, the HNBR with 0% AN content was represented by butadiene rubber (BR). Although, BR has an extremely low Tg (?94.5°C), it is incompatible with polymer matrix, and then could not toughen the material at three temperatures (?30, 0, and 25°C, respectively). Various characterizations including solubility parameters, scanning electron microscopy (SEM), dynamic mechanical thermal analysis (DMTA), Fourier transform infrared (FTIR) spectroscopy, and so on were carried out to elucidate the toughening mechanism. J. VINYL ADDIT. TECHNOL., 25:225–235, 2019. © 2018 Society of Plastics Engineers  相似文献   

3.
Styrene‐butadiene rubber (SBR) nanocomposites with different organoclay contents (up to 15 phr) were prepared by a melt compounding procedure, followed by a compression‐molding step in which the SBR matrix was sulfur crosslinked. The vulcanizates were characterized in respect to their curing, mechanical and viscoelastic properties, and thermal stability. The optimum cure time decreased with increasing organoclay content. This effect was attributed to the ammonium modifier present in the organoclay, which takes part in the curing reaction acting like an accelerator. The results of mechanical test on the vulcanizates showed that the nanocomposites presented better mechanical properties than unfilled SBR vulcanizate, indicating the nanoreinforcement effect of clay on the mechanical properties of SBR/organoclay nanocomposites. The addition of organoclay did not significantly change the glass transition temperature. However, the heights of tan δ value at the glass transition temperature for the nanocomposites are lower than that of the unfilled SBR. This suggests a strong interaction between the organoclay and the SBR matrix as the molecular relaxation of the latter is hampered. The temperature at which 50% degradation occurs (T50) and the temperature when the degradation rate is maximum (DTGmax) showed an improvement in thermal stability, probably related to the uniform dispersion of organoclay. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
The goal of this study is to compare thermal and mechanical properties of an epoxy resin system reinforced with SiC nanoparticles using both conventional thermal curing and microwave irradiation techniques. The microwave curing technique has shown potential benefits in processing polymeric nanocomposites by reducing the curing time without compromising the thermo‐mechanical performances of the materials. It was observed from this investigation that, the curing time was drastically reduced to ~30 min for microwave curing instead of 12 h room temperature curing with additional 6 h post curing at 75°C. Ductile behavior was more pronounced for microwave curing technique while thermal curing showed brittle like behavior as revealed from flexural test. The maximum strain to failure was increased by 25–40% for microwave‐cured nanocomposites over the room temperature cured nanocomposites for the same loading of nanofillers. The glass transition temperature (Tg) also increased by ~14°C while curing under microwave irradiation. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41708.  相似文献   

5.
Epoxy‐based shape‐memory polymers (ESMPs) are a type of the most promising engineering smart polymers. However, their inherent brittleness limits their applications. Existing modification approaches are either based on complicated chemical reactions or done at the cost of the thermal properties of the ESMPs. In this study, a simple approach was used to fabricate ESMPs with the aim of improving their overall properties by introducing crosslinked carboxylic nitrile–butadiene nanorubber (CNBNR) into the ESMP network. The results show that the toughness of the CNBNR–ESMP nanocomposites greatly improved at both room temperature and the glass‐transition temperature (Tg) over that of the pure ESMP. Meanwhile, the increase in the toughness did not negatively affect other macroscopic properties. The CNBNR–ESMP nanocomposites presented improved thermal properties with a Tg in a stable range around 100 °C, enhanced thermal stabilities, and superior shape‐memory performance in terms of the shape‐fixing ratio, shape‐recovery ratio, shape‐recovery time, and repeatability of shape‐memory cycles. The combined property improvements and the simplicity of the manufacturing process demonstrated that the CNBNR–ESMP nanocomposites are desirable candidates for large‐scale applications in the engineering field as smart structural materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45780.  相似文献   

6.
In this study, we used a solution casting method to prepare gellan gum (G)-based ternary nanocomposite films containing polyacrylamide (P) and zinc oxide (ZnO) nanoparticles. All composites were prepared using the chemical cross-linker N,N-methylenebisacrylamide. The nanocomposites were characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction, and scanning electron microscopy. Attenuated total reflectance FTIR revealed strong hydrogen bonding interactions among gellan gum, polyacrylamide, and ZnO, which enhanced the physiochemical, thermal, and mechanical properties of the GPZnO nanocomposites. The addition of ZnO nanoparticles increased the glass transition temperature (Tg: 181.8–196.3°C), thermal stability (T5%: 87.8–96.5°C), and char yield (23.9–29.1%) of the GP composite films, as well as their the tensile strength (from 33.5 to 43.8 MPa) and ultraviolet (UV) blocking properties (~99.2% protection against UVB [280–320 nm]). ZnO significantly influenced the rheological properties of the GP composite. The prepared GP and GPZnO nanocomposites exhibited shear thinning behavior and their viscosities decreased when there is an increase in shear rate. Storage and loss modulus increased with frequency with the addition of ZnO nanoparticles. The GPZnO films exhibited reduced hydrophilicity, moisture content, and water barrier properties compared with the GP film. The GPZnO nanocomposites exhibited effective antimicrobial activity against six different pathogens. The prepared GPZnO films could be useful in biodegradable packaging applications.  相似文献   

7.
A sonochemical technique is used for in situ coating of iron oxide (Fe3O4) nanoparticles on outer surface of MWCNTs. These Fe3O4/MWCNTs were characterized using a high‐resolution transmission electron microscope (HRTEM), X‐ray diffraction, and thermogravimetric analysis. The as‐prepared Fe3O4/MWCNTs composite nanoparticles were further used as reinforcing fillers in epoxy‐based resin (Epon‐828). The nanocomposites of epoxy were prepared by infusion of (0.5 and 1.0 wt %) pristine MWCNTs and Fe3O4/MWCNTs composite nanoparticles. For comparison purposes, the neat epoxy resin was also prepared in the same procedure as the nanocomposites, only without nanoparticles. The thermal, mechanical, and morphological tests were carried out for neat and nanocomposites. The compression test results show that the highest improvements in compressive modulus (38%) and strength (8%) were observed for 0.5 wt % loading of Fe3O4/MWCNTs. HRTEM results show the uniform dispersion of Fe3O4/MWCNTs nanoparticles in epoxy when compared with the dispersion of MWCNTs. These Fe3O4/MWCNTs nanoparticles‐infused epoxy nanocomposite shows an increase in glass transition (Tg) temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Polypropylene (PP)/clay nanocomposites were prepared by melt‐compounding PP with organomontmorillonite (OMT), using maleic anhydride grafted polypropylene (PP‐g‐MA) as the primary compatibilizer and N‐imidazol‐O‐(bicyclo pentaerythritol phosphate)‐O‐(ethyl methacrylate) phosphate (PEBI) as the cointercalating monomer. X‐ray diffraction patterns indicated that the larger interlayer spacing of OMT in PP was obtained due to the cointercalation monomer having a large steric volume and the d‐spacing further increased with the addition of PP‐g‐MA, as evidenced by transmission electron microscopy. Thermogravimetric analysis revealed that the PEBI‐containing PP nanocomposites exhibited better thermal stability than PEBI‐free PP composites. Dynamic mechanical analysis demonstrated that the storage modulus was significantly enhanced, and the glass transition temperature (Tg) shifted slightly to low temperature with the incorporation of clay for PP/OMT hybrids. PEBI‐containing PP/OMT composites gave a lower Tg value because of the strong internal plasticization effect of PEBI in the system. Cone calorimetry showed that the flame‐retardancy properties of PP nanocomposites were highly improved with the incorporation of PEBI. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Terpolymerization of L‐lactide (LA) and bisphenol A derivatives was performed on few hundred gram scale, and the resultant terpolymer (TP) was characterized by gel permeation chromatography, infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermogravimetric analysis. Moderate molecular weight (Mn ~ 12 kg/mol) TP was achieved with glass transition temperatures about 100°C (DSC and DMA). The TP exhibited improved thermal stability compared with polylactide (PLA), with a thermal degradation temperature of about 80°C higher than PLA. Although the TP exhibited distinctly different surface morphology compared with that of PLA, both showed similar contact angle and surface energy (ca. 40 mN/m) properties. Blends of PLA and TP showed enhanced glass transition (~ 5°C change in Tg) temperatures compared with PLA homopolymer. This is due to the compatibility of PLA and TP. Thus, TP could be used as an additive for PLA‐based blends to enhance compatibility with phenolic‐based resins. TP electrospun fiber morphology is also reported. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Alumina nanoparticles were functionalized with 3‐glycidyloxypropyl trimethoxysilane for compatibility with a low viscosity bisphenol E cyanate ester (BECy) resin. The functionalized alumina nanoparticles were characterized with Fourier transform infrared and thermogravimetric analysis. The alumina nanoparticles, which increase the viscosity of the BECy/alumina suspension, show a concurrent catalytic effect on the cure of the BECy resin, as indicated by reduced gelation times under isothermal cure conditions. Transmission electron microscopy micrographs reveal that most of the alumina nanoparticles are well dispersed in the BECy matrix, but a small fraction of particles formed agglomerates. The thermal‐mechanical properties of cured BECy composites reinforced with either bare alumina or functionalized alumina are evaluated by dynamic mechanical analysis. The storage modulus increases with both bare and functionalized alumina loading. Although the glass transition temperatures (Tg) of bare and functionalized alumina/BECy nanocomposites decrease with increasing filler content, the reduction in Tg is less severe when the alumina nanoparticles are first functionalized. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

11.
Polyacrylamide‐calcium carbonate (PAM/CaCO3) and polyacrylamide‐calcium sulfate (PAM/CaSO4) nanocomposites were prepared via solution‐mixing technique. The resulting PAM‐based nanocomposites with various CaCO3 and CaSO4 nanoparticles contents (0–4% w/w) were investigated. Nanoparticles of CaCO3 and CaSO4 were synthesized by in situ deposition technique. In this technique, the surface modification of nanoparticles was performed by nonionic polymeric surfactant. The particle size of nanoparticles was recognized by X‐ray diffraction and scanning electron microscope (SEM) analysis which confirms that the particle has diameter of 25–33 nm. As prepared, nanocomposites films (thickness, 40‐μm) were characterized by Fourier transform infrared (FT‐IR), SEM, and energy‐dispersive X‐ray spectroscopy (EDS). FT‐IR shows the chemical structure of nanocomposites where as SEM analysis suggested that the nanofillers dispersed well in polymer matrix and EDS shows the elemental composition of the nanocomposite samples. Thermal properties of the nanocomposites were studied by using differential scanning calorimetric analysis. The PAM/CaCO3 and PAM/CaSO4 nanocomposites showed a higher glass transition temperature and a better thermal stability compared to the pure PAM. The glass transition temperature (Tg) of nanocomposites increases with increase in content of nanoparticles. It may be owing to the interaction between inorganic and organic components. POLYM. COMPOS.,, 2012. © 2012 Society of Plastics Engineers  相似文献   

12.
ABSTRACT

Conjugated polymer/graphite nanocomposites have been known as high performance materials owing to improve the physicochemical properties relative to conventional once. Multilayered polymer nanocomposites based on polypyrrole (PPy), polyvinylchloride (PVC) as matrices and p-phenylene diamine (PDA) as linker were prepared via chemical in situ polymerization process and subsequently investigated the physical characteristics of fabricated nanocomposites at various loadings. The structural characterization and morphology of prepared nanocomposites were inspected by Fourier transform infrared spectroscopy (FTIR), X-ray photon spectroscopy (XPS), energy dispersive X-ray spectroscope (EDX), field emission scanning electron microscope (FESEM), respectively. The composite III showed higher thermal stability at 10 wt% loading of PPy. According to differential scanning calorimetry (DSC), the glass transition temperature (Tg), melting temperature Tm, and crystallization temperature (Tc) of nanocomposites increases with PPy loading (2–10 wt%) owing to crosslinking and chain rigidity. Moreover, higher surface area was displayed by the multilayered PPy/PVC/PDA@FG nanocomposites. Remarkably, electrical conductivity of ultimate nanocomposites was also found to be a function of PPy loading.  相似文献   

13.
Graft polymerization of vinyltriethoxysilane (VTES) onto styrene‐butadiene rubber (SBR) was carried out in latex using benzoic peroxide (BPO) as an initiator. The concentration of VTES effecting on vulcanization characteristics, mechanical properties and thermal properties of VTES‐grafted SBR (SBR‐g‐VTES) were investigated. The grafting of VTES onto SBR and its pre‐crosslinking were confirmed by attenuated total teflectance‐Fourier transform infrared reflectance and proton nuclear magnetic resonance. The mechanism of graft polymerization was studied. The results revealed that the minimum torque, optimum cure time, tensile strength, thermal decomposition temperature, and glass transition temperature (Tg) all increased with the increasing concentration of VTES. But the grafting efficiency of VTES, rate of vulcanization, and elongation at break of the SBR‐g‐VTES decreased. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
In contrast to polymeric composites, the role of interface/interphase has been widely acknowledged to govern their overall properties and performance. Environmental temperature has substantial effects on the interfacial durability of polymer nanocomposites. In this regard, present investigation has been carried out to study the mechanical performance of pristine (UCNT) and carboxylic functionalized CNT (FCNT) embedded epoxy nanocomposites under different elevated temperatures. Higher flexural strength and modulus of FCNT‐EP nanocomposite were recorded over UCNT‐EP and neat epoxy at room temperature environment. Flexural testing at elevated temperatures revealed a higher rate of strength degradation in polymer nanocomposites over neat epoxy. Postfailure analysis of specimens has been conducted to understand the alteration in failure micro‐mechanisms upon UCNTs and FCNTs addition in epoxy. Variation in viscoelastic properties with temperature has been studied from dynamic mechanical thermal analysis and significant reduction in glass transition temperature (Tg) is observed for nanocomposites. In the studied temperature and stress combinations, FCNT‐EP nanocomposites exhibited better creep resistance over UCNT‐EP and neat epoxy. Room temperature strengthening, elevated temperature strength degradations, improved creep resistance and reduction in Tg in nanocomposites over neat polymer have been discussed in terms of dynamic nature and gradient structure of CNT/epoxy interphase. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44851.  相似文献   

15.
Three types of polypropylene‐grafted silica (PGS‐2 K, PGS‐8 K and PGS‐30 K) with different grafting chain lengths were prepared. After melt‐blending PGS with polypropylene (PP), we studied the PP/PGS interface properties and the influence of PP/PGS interfaces on mechanical properties of nanocomposites. The strong matrix/particle interface was observed in PP/PGS‐30 K nanocomposites with 5 wt % particle loading as evidenced by 2.5 °C increased glass transition temperature (Tg) compared with neat PP, whereas the weak matrix/particle interface was observed in PP/PGS‐2 K nanocomposites with decreased Tg. The variations in the matrix/particle interfacial strength lead to a transition in the yield stress of nanocomposites. Compared with the unfilled PP, the yield stress of the PP/PGS‐2 K nanocomposites is decreased by 0.7 MPa, and the yield stress of the PP/PGS‐30 K nanocomposites is enhanced by 1.4 MPa. In addition, benefiting from good dispersion, the PP/PGS‐masterbatch nanocomposites with a strong matrix/particle interface not only exhibit increased Young's modulus and yield stress, but also the strain at break remains in line with the unfilled PP, which is in contrast to the conventional wisdom that the gain in modulus and strength must be at the expense of the decreased break strain. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45887.  相似文献   

16.
Polyether block amide (PEBA) elastomer‐organoclay nanocomposites were prepared by a melt mixing technique. The X‐ray diffraction and transmission electron microscope analysis indicated that the nanocomposite formed a partially exfoliated nanostructure in which the organoclay was dispersed uniformly throughout the matrix at the nanometer scale. The effect of organoclay on the melting temperature (Tm), glass transition temperature (Tg), crystallization temperature (Tc), and heat of fusion (ΔHm) of the PEBA was determined by differential scanning calorimetry. Enhanced mechanical properties of the nanocomposites were observed from tensile and dynamic mechanical analysis. Thermal gravimetric analysis showed that the clay nanoparticles caused an increase in the thermal stability of the PEBA. Measurement of oxygen permeability and the degree of swelling in ASTM #3 oil indicated that the gas barrier properties and solvent resistance were greatly improved by the clay nanoparticles. Melt rheological studies revealed that the nanocomposites exhibited strong shear thinning behavior and a percolated network of the clay particles was formed. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

17.
A simple method is reported to coat silicon carbide (SiC) nanoparticles with polystyrene (PS) to improve the interfacial adhesion between polymer matrix and SiC nanoparticles. The morphology of untreated SiC nanoparticles, PS coated SiC (p‐SiC) nanoparticles, SiC/PS nanocomposites, and p‐SiC/PS nanocomposites are observed. The HRTEM image of p‐SiC shows that the thickness of PS on the surface of SiC is about 1.5–2.0 nm, which is consistent with the TGA results. With 24.7 vol % untreated SiC nanoparticles dispersed into PS matrix, the thermal conductivity (λ) of the SiC/PS composites increases by about 192%. However, when the same volume fraction of p‐SiC nanoparticles is used, the increase is about 353%. This big difference could be attributed to the promoted dispersion of the p‐SiC in the PS matrix. The measurements of glass transition (Tg), dielectric constant (ε), and tensile strength at break (σb) also support this explanation. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Novel organoclays were synthesized by several kinds of phosphonium cations to improve the dispersibility in matrix resin of composites and accelerate the curing of matrix resin. The possibility of the application for epoxy/clay nanocomposites and the thermal, mechanical, and adhesive properties were investigated. Furthermore, the structures and morphologies of the epoxy/clay nanocomposites were evaluated by transmission electron microscopy. Consequently, the corporation of organoclays with different types of phosphonium cations into the epoxy matrix led to different morphologies of the organoclay particles, and then the distribution changes of silicate layers in the epoxy resin influenced the physical properties of the nanocomposites. When high‐reactive phosphonium cations with epoxy groups were adopted, the clay particles were well exfoliated and dispersed. The epoxy/clay nanocomposite realized the high glass‐transition temperature (Tg) and low coefficient of thermal expansion (CTE) in comparison with those of neat epoxy resin. On the other hand, in the case of low‐reactive phoshonium cations, the dispersion states of clay particles were intercalated but not exfoliated. The intercalated clay did not influence the Tg and CTE of the nanocomposite. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
The thermooxidative aging of ammonia‐catalyzed phenolic resin for 30 days at 60–170°C was investigated in this article. The aging mechanism and thermal properties of the phenolic resin during thermooxidative aging were described by thermogravimetry (TG)–Fourier transform infrared (FTIR) spectroscopy, attenuated total reflectance (ATR)–FTIR spectroscopy, and dynamic mechanical thermal analysis. The results show that the C? N bond decomposed into ammonia and the dehydration condensation between the residual hydroxyl groups occurred during the thermooxidative aging. Because of the presence of oxygen, the methylene bridges were oxidized into carbonyl groups. After aging for 30 days, the mass loss ratio reached 4.50%. The results of weight change at high temperatures coincided with the results of TG–FTIR spectroscopy and ATR–FTIR spectroscopy. The glass‐transition temperature (Tg) increased from 240 to 312°C after thermooxidative aging for 30 days, which revealed the postcuring of phenolic resins. In addition, an empirical equation between the weight change ratio and Tg was obtained. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
Polylactide (PLA) nanocomposite was prepared by melt blending of PLA and transition metal ion (TMI) adsorbed montmorillonite (MMT). PLA nanocomposite was characterized for mechanical performance, and the results revealed that the tensile modulus, flexural modulus, and impact strength were increased marginally. The nanocomposite was optimized at 5 wt% of TMI‐modified MMT (TMI‐MMT) loading. Thermogravimetric analysis displayed increase in onset of degradation temperature, and differential scanning calorimetry showed marginal increase in glass transition temperature (Tg) and melting temperature (Tm) in case of PLA nanocomposites, when compared with virgin PLA. The flammability testing of nanocomposites indicated good fire retardance characters. X‐ray diffraction patterns of TMI‐MMT and the corresponding nanocomposites indicated an intercalation of the metal ions into the clay interlayer. Fourier transform infrared spectroscopy analysis indicate formation of [Zn(EDA)2]2+ and [Cu(EDA)2]2+ complexes in the MMT interlayer. Dynamic mechanical analysis shows increase in glass transition temperature (Tg) and storage modulus (E′) in case of PLA nanocomposites reinforced with 5 wt% modified MMT. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号