首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5482篇
  免费   220篇
  国内免费   23篇
电工技术   61篇
综合类   8篇
化学工业   1184篇
金属工艺   182篇
机械仪表   123篇
建筑科学   144篇
矿业工程   9篇
能源动力   259篇
轻工业   307篇
水利工程   34篇
石油天然气   12篇
无线电   523篇
一般工业技术   1257篇
冶金工业   850篇
原子能技术   34篇
自动化技术   738篇
  2023年   52篇
  2022年   87篇
  2021年   171篇
  2020年   124篇
  2019年   124篇
  2018年   176篇
  2017年   143篇
  2016年   150篇
  2015年   103篇
  2014年   153篇
  2013年   370篇
  2012年   220篇
  2011年   297篇
  2010年   227篇
  2009年   260篇
  2008年   202篇
  2007年   208篇
  2006年   162篇
  2005年   148篇
  2004年   154篇
  2003年   134篇
  2002年   124篇
  2001年   99篇
  2000年   83篇
  1999年   93篇
  1998年   141篇
  1997年   95篇
  1996年   94篇
  1995年   91篇
  1994年   88篇
  1993年   92篇
  1992年   87篇
  1991年   72篇
  1990年   57篇
  1989年   73篇
  1988年   65篇
  1987年   50篇
  1986年   54篇
  1985年   57篇
  1984年   62篇
  1983年   64篇
  1982年   49篇
  1981年   45篇
  1980年   46篇
  1979年   22篇
  1978年   29篇
  1977年   29篇
  1976年   52篇
  1974年   20篇
  1973年   26篇
排序方式: 共有5725条查询结果,搜索用时 17 毫秒
1.
The through-thickness conductivity of carbon fiber reinforced polymer (CFRP) composite was increased by incorporating multiwalled carbon nanotubes in the interlaminar region. Carbon nanotubes (CNTs) were dispersed in a polyethylenimine (PEI) binder, which was then coated onto the carbon fiber fabric. Standard vacuum-assisted resin infusion process was applied to fabricate the composite laminates. This modification technique aims to enhance the electrical conductivity in through-thickness direction for the purpose of nondestructive testing, damage detection, and electromagnetic interference shielding. CNT concentrations ranging from 0 to 0.75 wt% were used and compared to pristine CFRP samples (reference). The through-thickness conductivity of the CFRP exhibited an improvement of up to 781% by adopting this technique. However, the dispersion of CNT in PEI led to a viscosity increase and poor wetting properties which resulted in the formation of voids/defects, poor adhesion (as shown in scanning electron micrographs) and the deterioration of the mechanical properties as manifested by interlaminar shear strength and dynamic mechanical analysis measurements.  相似文献   
2.

In this paper, a novel compact semi-circular slot (SCS) 2 × 2 MIMO antenna is presented for 5G NR sub-6 GHz applications with high isolation. The proposed antenna consists of a semi-circular slot in ground plane, U-shaped stub, and 50-ohm microstrip feed line. The novelty of this paper are the Semi-Circular Slot acts a radiator, the port isolation  is enhanced using a simple conductor strip as a neutralization line, very compact in size, low ECC, and good impedance matching. The overall size of the proposed SCS MIMO antenna is 16 mm x 21 mm, and FR4 substrate is used with thickness of 1.6 mm. The two SCS antenna elements are separated by edge-to-edge distance of 1mm (\(=0.019\lambda _{0}\)). The proposed compact MIMO antenna design is simulated using Ansys HFSS. To validate SCS MIMO antenna, a prototype was fabricated and tested. The measured results are attained at 5.5 GHz with isolation greater than 25dB, impedance bandwidth (S11\(<-10\) dB) covers from 5.10 GHz to 5.80 GHz with return loss of ? 39.5 dB. The MIMO antenna parameters, ECC, CCL, TARC, and MEG are studied, and the values are obtained within acceptable limits. The measured and simulated antenna results are almost similar. This compact MIMO antenna is suitable for 5G communications in sub-6 GHz wifi-5 band applications.

  相似文献   
3.
This article addresses an investigation of the entropy analysis of Williamson nanofluid flow in the presence of gyrotactic microorganisms by considering variable viscosity and thermal conductivity over a convectively heated bidirectionally stretchable surface. Heat and mass transfer phenomena have been incorporated by taking into account the thermal radiation, heat source or sink, viscous dissipation, Brownian motion, and thermophoretic effects. The representing equations are nonlinear coupled partial differential equations and these equations are shaped into a set of ordinary differential equations via a suitable similarity transformation. The arising set of ordinary differential equations was then worked out by adopting a well-known scheme, namely the shooting method along with the Runge-Kutta-Felberge integration technique. The effects of flow and heat transfer controlling parameters on the solution variables are depicted and analyzed through the graphical presentation. The survey finds that magnifying viscosity parameter, Weissenberg number representing the non-Newtonian Williamson parameter cause to retard the velocity field in both the directions and thermal conductivity parameter causes to reduce fluid temperature. The study also recognizes that enhancing magnetic parameters and thermal conductivity parameters slow down the heat transfer rate. The entropy production of the system is estimated through the Bejan number. It is noticeable that the Bejan number is eminently dependent on the heat generation parameter, thermal radiation parameter, viscosity parameter, thermal conductivity parameter, and Biot number. The skillful accomplishment of the present heat and mass transfer system is achieved through the exteriorized choice of the pertinent parameters.  相似文献   
4.
5.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   
6.
Journal of Materials Science - Hybrid oxidation methodologies (HOMs) and active site enrichment of 2D nanocatalyst through defects induction are ubiquitously used for generating adequate reactive...  相似文献   
7.
Commodity polymers are the most widely used materials for electronic packaging applications. However, they are nondegradable and causing serious environmental damage. Addressing this challenge, the relative effects of graphite (G) and graphene oxide (GO) dispersion on the enzymatic degradation, electronic properties, thermal degradation, and crystallization behavior of enzyme degradable polylactide/poly(ε-caprolactone) blend composites is investigated. Owing to the oxygenated surface functionalities and excellent thermal conductivity arising from the carbon structure, the randomly dispersed GO particles do not provide electrical pathways and facilitate large enhancements in the electrical resistivity (126%) and thermal conductivity (72%) of the blend composites. However, while the G particles enhanced the thermal conductivity of the composites, they had little effect on enzymatic degradation. Furthermore, they reduced the electrical resistivity, particularly at high concentration (0.25 wt % G), as a result of the conducting delocalized electrons in the G structure and due to network formation. We also find that the energy required to initiate and propagate the thermal degradation process for GO-filled blend composites is relatively lower than that of G-filled blend composite. However, the former composites show higher crystallization rate coefficients value than that of G-filled composites and the neat blend, thereby providing better crystallization ability and miscibility with the matrix. In summary, the GO-filled blend composites are observed to show potential for use in sustainable materials for thermal management applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47387.  相似文献   
8.

Floods are common and recurring natural hazards which damages is the destruction for society. Several regions of the world with different climatic conditions face the challenge of floods in different magnitudes. Here we estimate flood susceptibility based on Analytical neural network (ANN), Deep learning neural network (DLNN) and Deep boost (DB) algorithm approach. We also attempt to estimate the future rainfall scenario, using the General circulation model (GCM) with its ensemble. The Representative concentration pathway (RCP) scenario is employed for estimating the future rainfall in more an authentic way. The validation of all models was done with considering different indices and the results show that the DB model is most optimal as compared to the other models. According to the DB model, the spatial coverage of very low, low, moderate, high and very high flood prone region is 68.20%, 9.48%, 5.64%, 7.34% and 9.33% respectively. The approach and results in this research would be beneficial to take the decision in managing this natural hazard in a more efficient way.

  相似文献   
9.
This paper presents a research study on a bridge site located along US highway 67 over SH 174 in Cleburne, Texas, where bridge approach slabs have experienced more than 0.4 m (17 in.) of settlement within a span of 16 years after construction. Many treatment methods attempted to mitigate this problem had proven to be ineffective. As part of novel rehabilitation works, the top of existing fill soil on the embankment was replaced with lightweight expanded polystyrene (EPS) geofoam blocks to alleviate the approach slab settlements. This paper describes initial design and construction details of the rehabilitation works performed on the embankment system along with a focus on the early performance details. Field monitoring studies were conducted for almost three years to study the bump/settlements under the EPS geofoam embankment system. Short term measured settlement data was analyzed with hyperbolic model to predict the long term settlements. Numerical finite element studies attempted in this study showed that settlements could be reasonably predicted by modeling these geofoam embankments. Based on the monitoring and modeling studies, the effectiveness of utilizing EPS geofoam as an embankment fill material was addressed to mitigate the differential settlements under a bridge approach slab.  相似文献   
10.
Singh  A. K.  Chandra  Devesh  Kattayat  Sandhya  Kumar  Shalendra  Alvi  P. A.  Rathi  Amit 《Semiconductors》2019,53(12):1584-1592
Semiconductors - Compositional variations in GaAs based ternary alloys have exhibited wide range alterations in electronic properties. In the present paper, first-principles study of...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号