首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Short-term sulfidation–oxidation exposures were conducted under high pS2 and low pO2 conditions for TiCrAl and FeCrAl alloys at 600 and 800 °C. Low mass gains and submicron Al-and Ti-rich oxide scales were formed on TiCrAl at 600 °C, while high mass gains and FeS-based scale formation were observed for FeCrAl. Based on the good behavior of TiCrAl, third-element effect additions of Cr are not inherently detrimental under sulfidation–oxidation conditions. Rather, differences in the mechanistic action of the third-element addition of Cr between FeCrAl and TiCrAl alloys and its relevance to low oxygen potential sulfidation–oxidation environments were the key factors in determining whether or not a protective alumina scale was established.  相似文献   

2.
Thermogravimetric analysis (TGA) testing was used to measure the change in weight of polished samples of Al–XSi (X = 0 and 1.2 mass%) alloys. The samples were heated at 843 K for 6 h in dry air or nitrogen gas. X-ray diffraction was used to monitor the formation of the oxide films on the surface of the samples. The surface oxide films were more compact after the Al alloy samples were heated in air, and the oxide films showed some cracks after being heated in nitrogen gas. The thermally formed surface oxide films on the Al–1.2 mass% Si alloy samples heated in air and in nitrogen gas possessed loose structures, which comprised mainly γ-alumina, diaspore, and gibbsite, along with metallic silicon and/or aluminum. The weight variation curve of the films appeared serrated; this can be attributed to chain reactions (3Si + 3O2 → 3SiO2 + 4Al → 3Si + 2Al2O3) that occurred within the film.  相似文献   

3.
The superior high temperature oxidation resistance of FeCrAl alloys relies on the formation of a dense and continuous protective aluminium oxide layer on the alloy surface when exposed to high temperatures. Consequently, the aluminium content, i.e. the aluminium concentration at the alloy–oxide layer interface, must exceed a critical level in order to form a protective alumina layer. In the present study the oxidation behaviour of six different FeCrAl alloys with Al concentrations in the range of 1.2–5.0 wt% have been characterised after oxidation at 900 °C for 72 h with respect to oxide layer surface morphology, thickness and composition using scanning electron microscopy, energy dispersive X‐ray spectroscopy and Auger electron spectroscopy. The results show that a minimum of 3.2 wt% Al in the FeCrAl alloy is necessary for the formation of a continuous alumina layer. For Al concentrations in the range of 2.0–3.0 wt% a three‐layered oxide layer is formed, i.e. an oxide layer consisting of an inner alumina‐based layer, an intermediate chromia‐based layer and an outer iron oxide‐based layer. In contrast, the 1.2 wt% Al FeCrAl alloy is not able to form a protective oxide layer inhibiting extensive oxidation.  相似文献   

4.
The high-temperature oxidation behavior of an oxide dispersion-strengthened (ODS) Fe3Al alloy has been studied during isothermal and cyclic exposures in oxygen and air over the temperature range 1000 to 1300°C. Compared to commercially available ODS–FeCrAl alloys, it exhibited very similar short-term rates of oxidation at 1000 and 1100°C, but at higher temperatures the oxidation rate increased because of increased scale spallation. Over the entire temperature range, the oxide scale formed was -Al2O3, with the morphological features typical of reactive-element doping and was similar to those formed on the ODS–FeCrAl alloys. Although initially this scale appeared to be extremely adherent to the Fe3Al substrate, an undulating metal–oxide interface formed with increasing time and temperature, which led to cracking of the scale in the vicinity of surface undulations accompanied by a loss of small fragments of the full-scale thickness. In some instances, the surface undulations appeared to have resulted from gross outward local extrusion of the alloy substrate. Similar features developd on the FeCrAl alloys, but they were typically much smaller after a given oxidation exposure. The ODS–Fe3Al alloy has a significantly larger coefficient of thermal expansion (CTE) than typical FeCrAl alloys (approximately 1.5 times at 900°C) and this appears to be the major reason for the greater tendency for scale spallation. The stress generated by the CTE mismatch was apparently sufficient to lead to buckling and limited loss of scale at temperatures up to 1100°C, with an increasing amount of substrate deformation at 1200°C and above. This deformation led to increased scale spallation by producing an out-of-plane stress distribution, resulting in cracking or shearing of the oxide.  相似文献   

5.
In order to investigate the oxidation process of FeCrAl alloy developed by NPIC under simulated LOCA conditions, three experimental groups of alloys were exposed to the steam atmosphere and heated to test temperature (550, 1000, and 1200 °C), respectively, and then maintained at the temperature for 4 hours. The oxidation kinetics of alloys were obtained with a high-precision synchronous thermal analyzer, and the oxide film was investigated by XPS, XRD, and SEM technologies. The results showed that the FeCrAl alloy still retains good oxidation resistance under 1200 °C steam atmosphere. The oxidation process of alloy at 1200 °C can be described into six stages.  相似文献   

6.
The oxidation kinetics of the classic pressurized water reactors (PWR) cladding alloy Zircaloy-4 has been extensively investigated over a wide temperature range. In recent years, new cladding alloys optimized for longer operation and higher burn-up are being increasingly used in Western light water reactors (LWR). These alloys were naturally optimized regarding their corrosion behavior for operational conditions. The publicly available data on high temperature oxidation of the various cladding materials are very scarce. This paper presents the results of a first test series with Zircaloy-4 as reference material, Framatome Duplex cladding, Framatome M5® and the Russian E110 alloy. The first two are Zr–Sn, the latter two Zr–Nb alloys. All materials were investigated in isothermal and transient tests in a thermal balance under argon–oxygen atmosphere. Strong and varying differences (up to 500%) of oxidation kinetics between the alloys were found till 1000 °C, where the breakaway effect plays a role. Smaller but still significant differences (20–30%) were observed at higher temperatures. Generally, the advanced cladding alloys here studied show also a favorable behavior at high temperatures during accident scenarios.  相似文献   

7.
The interfacial chemistry that developed as a result Al2O3-scale growth on γ-Νi + γ′-Ni3Al alloys at 1150 °C was studied using scanning Auger microscopy after the oxide layer was scratched to spall under ultra-high vacuum. The extent of scale spallation was used to evaluate semi-quantitatively the interfacial strength. The alloys investigated were primarily γ′ in structure, containing 22 at.% Al plus further additions of Pt, Cr and/or Hf. In the case of the binary γ + γ′ alloy, it was found that a sub-monolayer of sulfur segregated at the alloy/scale interface. Platinum reduced and hafnium eliminated sulfur segregation, but chromium enhanced it through Cr–S co-segregation, even on Pt- and Hf-containing alloys. Platinum also segregated slightly at the alloy/scale interface. The interface strength was a strong function of the sulfur content. Beyond the effect of eliminating S segregation, Pt and Hf both showed additional beneficial effects on alumina scale adhesion.  相似文献   

8.
The oxidation kinetics of the classical pressurized water reactors (PWR) cladding alloy Zircaloy-4 have been extensively investigated over a wide temperature range from operational conditions to beyond design basis accident (BDBA) temperatures. In recent years, new cladding alloys optimized for longer operation and higher burn-up are used in Western light water reactors (LWR). This paper presents the results of thermo-gravimetric tests with Zircaloy-4 as the reference material, Duplex DX-D4, M5® (both AREVA), ZIRLO? (Westinghouse), and the Russian E110 alloy. All materials were investigated in isothermal and transient tests in a thermal balance with steam furnace. Post-test analyses were performed by light-microscopy and neutron radiography for investigation of the hydrogen absorbed by the metal. Strong and varying differences (up to 800%) in oxidation kinetics between the alloys were found at up to 1000 °C, where the breakaway effect plays a role. Less but significant differences (ca. 30%) were observed at 1100 and 1200 °C. Generally, the M5® alloy revealed the lowest oxidation rate over the temperature range investigated whereas the behavior of the other alloys was considerably dependent on temperature. A strong correlation was found between oxide scale structure and amount of absorbed hydrogen.  相似文献   

9.
FeCrAl alloys are proposed candidate materials for liquid lead applications. Chromium is needed to assist the formation of a protective alumina layer, albeit has to be limited to avoid α′ precipitation. Reactive elements (RE) improve oxidation properties, but little is known about the RE effects at lower temperatures. An alloy matrix based on Fe–10Cr–4Al (wt%), with varying Zr, Y and Ti contents, was exposed to liquid lead up to 1 year in the temperature interval of 450–550 °C. It was found that the formation of protective alumina was dependent on the RE/carbon ratio. All alloys with ratios lower than unity showed poor oxidation properties due to the formation of Cr-carbides in the metal–oxide interface. A sufficiently high amount of Zr and Ti was shown to significantly improve the oxidation properties at both temperatures. The positive effect is related to the suppression of Cr-carbides by addition of stronger carbide formers.  相似文献   

10.
The reactive wetting behaviors of molten Zn–Al–Mg alloys on MnO- and amorphous (a-) SiO2-covered steel sheets were investigated by the sessile drop method, as a function of the Al and Mg contents in the alloys. The sessile drop tests were carried out at 460 °C and the variation in the contact angles (θc) of alloys containing 0.2–2.5 wt% Al and 0–3.0 wt% Mg was monitored for 20 s. For all the alloys, the MnO-covered steel substrate exhibited reactive wetting whereas the a-SiO2-covered steel exhibited nonreactive, nonwetting (θc?>?90°) behavior. The MnO layer was rapidly removed by Al and Mg contained in the alloys. The wetting of the MnO-covered steel sheet significantly improved upon increasing the Mg content but decreased upon increasing the Al content, indicating that the surface tension of the alloy droplet is the main factor controlling its wettability. Although the reactions of Al and Mg in molten alloys with the a-SiO2 layer were found to be sluggish, the wettability of Zn–Al–Mg alloys on the a-SiO2 layer improved upon increasing the Al and Mg contents. These results suggest that the wetting of advanced high-strength steel sheets, the surface oxide layer of which consists of a mixture of MnO and SiO2, with Zn–Al–Mg alloys could be most effectively improved by increasing the Mg content of the alloys.  相似文献   

11.
The oxidation behavior of Ni, Ni–3Al, and Ni–6Al alloys at 800 °C in air + H2O was investigated. The oxidation kinetics of Ni and the alloys in air + H2O were very similar, but the mass gains of Ni and each alloy were smaller in air + H2O than in air. Oxidation products formed on Ni-3 and 6Al alloys consisted of an outer NiO scale and internal Al2O3 precipitates. The growth rates of both NiO and the internal oxidation zone were much smaller in air + H2O. The NiO scale formed in air + H2O was duplex in structure with outer porous and inner dense layers. The outer porous layer consisted of fine powder-like NiO particles. A thicker metallic Ni(Al) layer formed at the NiO/alloy interface in air + H2O, caused by extrusion of Ni from the substrate due to volume changes accompanying the internal oxide formation. Formation of the metallic Ni layer appeared to be the reason for the similarity between the oxidation kinetics of both Ni and the alloys in air + H2O.  相似文献   

12.
The oxidation behavior of small amounts of Al–7Si alloys containing strontium and magnesium has been investigated using thermal gravimetrical analysis (TGA). The results of TGA experiments showed that Sr-additions increase the oxidation rate of the Al–7Si alloys melt significantly. A noticeable content of SrO-containing mixed oxides was found, using scanning electron microscopy (SEM), on the oxidized surfaces after even short oxidation periods. The rapid rate of Sr-loss during the oxidation periods also showed that Sr was highly reactive in the small melts for oxidation. The oxidation of large Al–7Si melts was also studied by analyzing the surface layer at different periods. The surface oxide layers on the large melts consisted of Al2O3 and Al2O3 · MgO but were found to contain no detectable SrO. Also, in contrast with the small melts, the relatively slow rate of Sr-loss during the oxidation period showed that strontium has good stability in a large melt, revealing that in such cases the tendency of Sr for oxidation is not noticeable.  相似文献   

13.
At temperatures above around 1100 °C the life time of FeCrAl based alloy components can be limited by oxidation. Growth and spalling of the protective alumina scale leads after long exposure times to a depletion of aluminium in the alloys, eventually resulting in breakaway oxidation. This life time limit can be predicted using a recently developed model, taking into account scale growth rate (characterized by the parameters k and n), initial alloy Al content (Co), critical Al content for protective alumina formation (CB), oxide adherence and component geometry. Based on the evaluation of long term oxidation data for a number of commercial and model FeCrAl alloys it is shown that the life time can substantially be increased by decreasing the oxide growth rate and/or increasing Co, whereby application of the latter factor is in most practical cases limited due to restrictions imparted by the alloys' mechanical properties. For typical commercial ODS materials CB is around 1 wt‐%, however, this value is strongly affected by the exact alloy composition, especially Cr‐content. CB seems to be higher for dispersion strengthened alloys than for conventional wrought materials. The adherence of the oxide scale not only depends on type and exact amount of reactive element (oxide) addition but also on other common minor alloying additions, such as Ti. Indications were found, that oxide adherence is also affected by the mechanical strength of a material and/or component.  相似文献   

14.
To evaluate the suitability of HR3C and 22Cr–25Ni–2.5Al AFA steels as the heat-resistant alloys, the oxidation behavior of them was investigated in air at 700, 800, 900 and 1000 °C. The evolution of oxide layer on the surface and subsurface was investigated using a combination of compositional/elemental (SEM, EDS) and structural (XRD, GDOES) techniques. A dense and continuous Cr2O3 healing layer on the HR3C was formed at the temperature of 700 or 800 °C, but the Cr2O3 oxide film on HR3C was unstable and partly converted into a less protective MnCr2O4 with the increase in temperature to 900 or 1000 °C. The composition and structure of oxide film of 22Cr–25Ni–2.5Al AFA steels are significantly different to the HR3C alloys. The outer layer oxides transformed from Cr2O3 to Al-containing oxides, leading to a better oxidation resistance at 700 or 800 °C compared to HR3C. Further, the oxide films consist of internal Al2O3 and AlN underneath the outer loose layer after 22Cr–25Ni–2.5Al AFA oxidized at 900 or 1000 °C. It can be proved that the internal oxidation and nitrogen would make 22Cr–25Ni–2.5Al AFA steels have worse oxidation resistance than HR3C alloys at 900 or 1000 °C.  相似文献   

15.
The corrosion behaviors of T5 (225 °C, 6.5 h) and T6 (460 °C, 2 h + 225 °C, 12 h) peak-aged Mg–7Gd–5Y–1Nd–0.5Zr alloys with oxide films were investigated by optical microscope (OM), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). The weight loss rates and electrochemical tests were also analyzed. The thicknesses of T5 and T6 oxide films are roughly 0.6 and 1.0 μm, respectively. The components of oxide films mainly consist of O, Mg, Y, Nd, and Gd, and the T6 oxide film results in surfaces with larger peaks than T5 oxide film. In addition, Y, Nd, and Gd peaks are all higher than those of Mg–7Gd–5Y–1Nd–0.5Zr alloys, but Mg peak is consistently far below than that of the alloys. The specimens could be arranged in decreasing order of corrosion rates and corrosion current densities: T6 oxide film < T5 oxide film < T6 without oxide film < T5 without oxide film. The oxide films are compact to increase the corrosion resistance for Mg–7Gd–5Y–1Nd–0.5Zr alloys, which will provide a guiding insight into the corrosion and protection of Mg–RE alloys in atmospheric environments.  相似文献   

16.
The oxidation behavior of Fe3Al and Fe3Al–Zr intermetallic compounds was tested in synthetic air in the temperature range 900–1200 °C. The addition of Zr showed a significant effect on the high-temperature oxidation behavior. The total weight gain after 100 h oxidation of Fe3Al at 1200 °C was around three times more than that for Fe3Al–Zr materials. Zr-containing intermetallics exhibited abnormal kinetics between 900 and 1100 °C, due to the presence and transformation of transient alumina into stable α-Al2O3. Zr-doped Fe3Al oxidation behavior under cyclic tests at 1100 °C was improved by delaying the breakaway oxidation to 80 cycles, in comparison to 5 cycles on the undoped Fe3Al alloys. The oxidation improvements could be related to the segregation of Zr at alumina grain boundaries and to the presence of Zr oxide second-phase particles at the metal–oxide interface and in the external part of the alumina scale. The change of oxidation mechanisms, observed using oxygen–isotope experiments followed by secondary-ion mass spectrometry, was ascribed to Zr segregation at alumina grain boundaries.  相似文献   

17.
The effect of Si and Y2O3 additions on the oxidation behavior of Ni–xAl (x = 5 or 10 wt%) alloys at 1150 °C was studied. The addition of Y2O3 accelerates oxidation rate of alloys, especially growth rate of NiO, but improves adherence of the scale to the substrate. The addition of Si facilitates the selective oxidation of Al, suppresses the formation of NiO and therefore reduces the critical Al content to form continuous layer of alumina scale. Higher Al content decreases the oxidation rate of alloys in binary Ni–Al alloys and increases the oxidation rate of alloys in ternary Ni–Al–Si alloys. The effect of third-element Si is more significant and beneficial than that of Al content in ternary Ni–Al–Si alloys.  相似文献   

18.
Alloys of γ-Ni(Al), γ–γ′ Ni(Al)–Ni3Al, γ′–Ni3Al and β-NiAl were exposed in 1 h cycles to a carbon-supersaturated CO–H2–H2O gas mixture (a C = 36.7, ${{p_{{\rm O}_2}}} $  = 2.83 × 10?26 atm) at 650 °C and an overall pressure of 1 atm. It was found that all alloys except β-NiAl had been attacked by metal dusting, leaving a layered structure of nickel particles, graphite and catalytically grown nano-sized carbon filaments as the corrosion product. Carbon uptake and metal wastage rates were slowed with increasing aluminium content for the single-phase alloys. However, the γ–γ′ two phase alloy had the overall highest metal loss rate. Surface morphologies reflected uniform attack for the γ and γ–γ′ alloys, whereas on γ′ a pitting type of attack was observed. Amorphous alumina formation was identified on the surface of the γ′ and β alloys, and is thought to be the major factor providing protection against dusting attack.  相似文献   

19.
In order to study the effect of yttrium as alloying element on the high-temperature oxidation of an alumina-forming alloy, 0.093 wt% yttrium was incorporated into a model FeCrAl alloy. Yttrium has a beneficial effect on the isothermal oxidation behavior in air at 1100 °C. Glancing angle X-ray diffraction made on a sample oxidized for 1000 h under thermal cycling conditions indicated that yttrium is located at the internal interface as Y3Al5O12. Secondary neutral mass spectrometry results showed that the diffusion mechanism is modified by the presence of yttrium as an alloying element. Moreover, the beneficial effect of yttrium on the alloy oxidation is also related to a reduced metallic grain size. The growth of metal grains during oxidation was especially observed on the yttrium-free FeCrAl alloy. It is also well established that the diffusion mechanism in the oxide scale is modified by yttrium. The aim of the present work was to show that yttrium also plays a role on the aluminum diffusion in the metallic substrate and has a strong influence on the kinetic transient stage during the FeCrAl–0.1Y oxidation.  相似文献   

20.
《Intermetallics》1999,7(5):529-541
The isothermal and cyclic oxidation behaviour of Ti–48Al–2Mn–2Nb (at%) were studied at high temperatures in air in comparison with the intermetallic alloys Ti–48Al–2Cr–2Nb and Ti–48Al–2Cr. Tests were performed in air between 800 and 900°C. At 800°C Ti–48Al–2Mn–2Nb showed an excellent oxidation resistance under isothermal and cyclic conditions, comparable with Ti–48Al–2Cr–2Nb, and superior to Ti–48Al–2Cr. At 900°C the isothermal oxidation rate of Ti–48Al–2Mn–2Nb was similar as found for Ti–48Al–2Cr–2Nb, but much lower as that of Ti–48Al–2Cr. Upon cooling the oxide scale formed on Ti–48Al–2Mn–2Nb was prone to spallation. During the cyclic oxidation at 900°C, a steady state condition is reached for both niobium bearing materials, with a net linear mass loss rate, due to spallation and (re-)growth of the oxide scale. The linear mass loss rate for the Ti–48Al–2Mn–2Nb was higher than that of Ti–48Al–2Cr–2Nb, indicative of a higher susceptibility for spallation. During the initial stage of oxidation of all tested materials a complex multi-phased and multi-layered scale was formed consisting of α-Al2O3, TiO2 (rutile), TiN and Ti2AlN. After longer exposure times the outer scale was dominated by TiO2. In case of the niobium containing materials no loss of protectivity of the oxide scale was found during the growth of the outer TiO2 layer (under isothermal conditions). Two-stage oxidation experiments with isotope tracers were performed to study the oxidation mechanism in more detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号