首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
采用Gleeble-3800热压缩实验机研究了新型Ni-Cr-Co基合金在1050~1250 ℃、0.001~1 s-1条件下的热变形行为,并利用EBSD探讨了变形温度和应变速率对合金组织演变和动态再结晶形核机制的影响。结果表明,流变应力随变形温度的升高而降低,而随应变速率的增大而增加。基于流变应力曲线,建立合金的Arrhenius本构方程和热加工图,得到热变形激活能为520.03 kJ/mol,最佳热加工区间为1175~1250 ℃、0.006~1 s-1,该区域最大功率耗散效率为45%。动态再结晶分数随变形温度的升高和应变速率的降低而增加,且动态再结晶过程形成均匀细小的等轴晶粒以及∑3孪晶界。动态再结晶形核主要以晶界“弓出”为特征的不连续动态再结晶机制主导。低温高应变速率下,持续亚晶转动诱导的连续动态再结晶作为辅助形核机制发挥作用。  相似文献   

2.
通过热压缩实验,研究了Incoloy825合金在变形量为60%,温度为950~1150℃和应变速率0.001~1s-1范围内热变形行为。基于Arrhenius方程和Zener-Hollomon参数模型,建立该合金的本构方程模型。采用金相显微镜(OM)和电子背散射衍射(EBSD)技术研究了合金的组织演变规律。结果表明,随着变形温度的升高或应变速率的降低,DRX的百分含量增加。热变形过程中DRX既包括晶界弓起形核机制的不连续动态再结晶(DDRX)也包括渐进式亚晶旋转形核机制的连续动态再结晶(CDRX)。随着变形温度的升高或应变速率的降低DDRX增强而CDRX减弱。此外随着温度的升高或应变速率的降低,低角度晶界逐渐向高角度晶界转化。同时随机分布的Σ3孪晶界趋于均匀化,且对动态再结晶起促进作用。  相似文献   

3.
利用等温热压缩实验,研究了TG700C合金变形温度为1050~1250℃、应变速率为1~20 s-1、变形量为60%变形条件下的热变形及动态再结晶行为。对材料高应变速率下的变形热效应进行了温升修正,获得了该合金的流变曲线和热变形本构方程,热变形过程的表观激活能为Q=624.762 k J/mol。该合金经过温升修正后的流变曲线呈现稳态的流变应力,不同变形温度和应变速率下合金的流变应力存在差异。合金的动态再结晶形核方式为应变诱导晶界迁移形核,在高温低应变速率下,动态再结晶形核容易发生,再结晶的比例随着温度的升高和应变速率的降低而提高。  相似文献   

4.
对Ti-25V-15Cr-0.2Si阻燃钛合金在温度为950~1100℃,应变速率为0.001~1 s~(-1)条件下进行热压缩试验,研究了该合金在β相区变形时的动态再结晶行为。结果表明,该合金的热变形机制主要是由动态再结晶支配的,而动态再结晶新晶粒主要是通过弓弯形核机制来形成的。当应变速率降低和变形温度升高时动态再结晶易于发生;当应变速率为0.01~0.1 s~(-1),变形温度为950~1050℃时,动态再结晶使晶粒细化;当变形温度高于1100℃,应变速率低于0.001 s~(-1)时,动态再结晶晶粒粗化。为了确定在不同变形条件下的动态再结晶体积分数和动态再结晶晶粒尺寸,分别建立了该合金动态再结晶动力学和动态再结晶晶粒尺寸预测模型。  相似文献   

5.
采用Thermecmastor-Z型热模拟机对Haynes230合金进行变形温度为950~1250 ℃,应变速率为0.001~10 s-1范围内的高温压缩试验,并利用OM和TEM分析研究了热变形组织演化特征和动态再结晶形核机制。结果表明:动态再结晶晶粒尺寸和体积分数随着变形温度的升高而增大和增多,随着应变速率的升高而变小和减少;晶界弓出是合金动态再结晶的主要形核机制,项链组织在热变形组织演化过程中起着重要作用;动态再结晶稳态晶粒尺寸Dss与Z参数之间符合幂函数关系  相似文献   

6.
为了研究高性能柱状晶Cu-Al-Mn形状记忆合金的高温大变形加工能力,采用Gleeble 3500热模拟试验机,在变形温度700~850℃和应变速率0.01~10 s^(-1)条件下,对柱状晶Cu_(70.8)Al_(18.6)Mn_(10.6)形状记忆合金进行热压缩变形,分析合金的动态再结晶行为。结果表明:随着变形温度升高和应变速率的增大,合金逐渐在晶界处以晶界弓弯的形核开始机制发生动态再结晶,且动态再结晶晶粒个数和尺寸不断增加。根据Zener-Hollomon参数分析可得,合金的热变形激活能为Q=113.55KJ/mol。当应变速率因子ln Z<8时,合金发生动态再结晶;当8≤ln Z≤16.34时,合金可能发生或不发生动态再结晶;当ln Z>16.34时,合金不发生动态再结晶。结合合金的热加工图得到其热加工最佳工艺参数:变形温度和应变速率区间分别为725~825℃和0.08~1 s^(-1)。对比分析高温轧制前后合金组织和性能发现,合金在820℃轧制变形75%后不发生动态再结晶,且轧后合金在室温下仍具有8%左右的超弹性应变,同时马氏体相变开始应力和峰值应力均提高2倍多。因此,合金在稍低于动态再结晶温度下进行大变形加工后,不仅可以提高合金的强度,而且还可以较好地保留铸态合金的优异记忆性能。  相似文献   

7.
利用Thermecmaster-Z型热模拟试验机在β相区对铸态TB6钛合金进行了热压缩试验,并对其动态再结晶行为进行了研究。结果表明,合金在β热变形过程中主要存在两类形核位置:原始β晶界附近及β晶粒内部,相应地存在两类动态再结晶机制:不连续动态再结晶和连续动态再结晶。在较高应变速率(≥0.01s-1)时,以不连续动态再结晶机制为主,但动态再结晶发生的程度较低,不能通过此机制使组织获得明显细化;在低应变速率(≤0.001s-1)和高变形温度(≥950℃)时,以连续动态再结晶机制为主。此时,合金动态再结晶晶粒直接由亚晶转变而成,组织均匀、细小。  相似文献   

8.
采用热压缩试验方法,对Ti-5553钛合金的动态再结晶行为进行研究。结果表明,在温度800~860℃、应变速率0.01~10s-1的范围内,Ti-5553合金在高温、低应变速率变形时,晶界弓出形核是其主要的动态再结晶形核机制;在低温、高应变速率、大变形量变形时,位错塞积形核是主要的动态再结晶形核机制。在非均匀变形的条件下材料产生绝热剪切现象,其形核主要以亚晶吞并长大形核机制进行。  相似文献   

9.
通过热压缩实验研究Ti-6Al-2Zr-1Mo-1V钛合金在变形温度为1000~1100°C,应变速率为10-3~1.0s-1的条件下的动态再结晶行为。结果表明:在变形温度高于1050°C、应变速率低于0.01s-1时,合金的动态再结晶机制以不连续动态再结晶为主;在变形温度低于1050°C、应变速率高于0.01s-1时,合金的动态再结晶机制以连续动态再结晶为主,同时存在少量的不连续动态再结晶。此外,降低应变速率和升高变形温度均能促进动态再结晶进程并使β变形晶粒细化。  相似文献   

10.
采用等温热压缩实验研究了一种新型镍基高温合金在不同热变形条件下(变形温度1040~1120℃、应变量0.35~1.2、应变速率0.1 s-1)的动态再结晶行为。通过光学显微镜(OM)、扫描电子显微镜(SEM)和电子背散射衍射仪(EBSD)研究变形温度和应变量对合金热变形过程中组织演变和动态再结晶(DRX)形核机制的影响。结果表明,根据加工硬化率曲线能够准确确定DRX出现的临界应力和临界应变。合金的DRX晶粒体积分数随变形温度和应变量的增加而增加。在高温低应变速率下,不连续动态再结晶(DDRX)和连续动态再结晶(CDRX)形核机制同时发生。随着变形温度的升高,CDRX形核机制减弱,而CDRX机制在高温条件下占据主导。随着应变量的增加,合金中DDRX机制逐渐变强。热变形后期,CDRX仅作为辅助形核机制发挥作用。另外,Σ3孪晶界的形成有助于DRX晶粒的形核。  相似文献   

11.
通过对铸态Mg-3Sn-1Mn-1La合金在变形温度为200~450℃、应变速率为0.001~1.0s-1条件下进行热压缩实验,研究了其热变形行为和微观组织变化规律。结果表明:随着变形温度的降低和应变速率的升高,流变应力明显增大而再结晶晶粒尺寸减小。在变形温度较低的条件下,连续动态再结晶是主要的再结晶机制。然而,当变形温度升高时,非连续动态再结晶机制占主导。分析和修正了摩擦和变形热对流变应力的影响。结果表明,与摩擦相比变形热对流变应力的影响更加明显,且随着应变速率的增加和变形温度的降低,变形热对流变应力的影响更加明显。在实验数据的基础上建立了应变修正的本构方程。通过对实验值与预测值的对比发现,所建立的本构方程能够准确地描述实验合金的热变形行为。  相似文献   

12.
在THERMECMASTER-Z型热模拟试验机上,对锻态TB6钛合金在真应变为0.92、变形温度为800℃~1150℃、应变速率为0.001s-1~1s-1的条件下进行等温恒应变速率压缩试验,分析合金在β单相区条件下的热变形特点,并观察金相组织。结果表明,应变速率对合金流动应力的影响较显著;而变形温度对合金流动应力的影响在较高应变速率时较大,在较低应变速率时较小。动态再结晶晶粒尺寸和动态再结晶体积分数,随温度的升高而增大,随应变速率的增大而减小。从晶粒细化和动态再结晶组织均匀性考虑,当真应变为0.92时,变形温度选择在950℃~1050℃之间,应变速率选择在0.01s-1为宜。  相似文献   

13.
在GLEEBLE热模拟试验机上对变形态Ti40合金进行热压缩实验,采用基于Prasad准则的加工图技术,研究变形态Ti40合金在变形温度950℃~1100℃、应变速率0.001s-1~1.0s-1范围内的微观变形机制和流变失稳现象,并优化该合金的高温变形参数。结果表明,失稳区出现在低温、高应变速率区,当变形温度为950℃~1010℃、应变速率0.13s-1~1.0s-1时,失稳区会出现局部流动,在实际热加工时应尽量避开这一参数范围;变形温度950℃~1100℃、应变速率0.001s-1~0.01s-1为较佳的变形参数范围,其变形机制以动态再结晶为主,伴随动态回复,最佳的变形参数位于温度1050℃、应变速率0.001s-1附近,该区域发生了完全动态再结晶;除失稳区和较佳变形区以外的区域,变形机制以动态回复为主,伴随动态再结晶,是可加工的区域。  相似文献   

14.
采用Gleeble-3500热模拟试验机进行高温等温压缩实验,研究了变形条件对GH690合金高温变形动态再结晶的影响。结果表明:GH690合金动态再结晶过程是一个受变形温度和应变速率控制的过程,在应变速率为0.001~1s-1的实验条件下,GH690合金获得完全动态再结晶组织所需的温度随变形速率的增大而升高;动态再结晶晶粒尺寸随变形温度升高而增大。采用力学方法直接从流变曲线确定了GH690合金发生动态再结晶的临界应变量,并回归出临界应变量与Z参数的关系式:εc=1.135×10-3Z0.14233。GH690合金的主要动态再结晶机制是原始晶界凸起形核的不连续动态再结晶机制(DDRX),而新晶粒通过亚晶逐渐转动而形成的连续动态再结晶机制(CDRX)则起辅助作用。  相似文献   

15.
研究了铸态TC21钛合金在温度1000~1150℃,应变速率0.01~10s-1条件下的高温压缩变形行为,基于动态材料模型建立了热加工图,并结合变形微观组织观察确定了该合金在实验条件下的高温变形机制及加工工艺。结果表明:TC21合金在β相区进行热压缩,主要变形机理为动态回复;Ⅰ区(高应变速率,ε≥1s-1),材料落入流动失稳区域,其微观变形机制为局部塑性流动,在制定热加工工艺时应尽量避免;Ⅱ区(1050~1120℃,0.1~1s-1),β晶粒变扁、拉长,晶界平直,为典型的动态回复,功率耗散率为32%~34%;最优加工区,Ⅲ区(低应变速率0.01~0.1s-1),功率耗散为38%~46%,拉长的β晶粒晶界上出现连续再结晶现象,首火次开坯应在高温(1150℃)附近进行,以提高铸态组织的塑性,随后开坯应在中低温进行,以得到细小均匀的β晶粒。  相似文献   

16.
基于等温恒应变速率压缩实验,对300M钢在变形温度为850℃~1180℃、应变速率为0.01s-1~10s-1条件下的热变形行为,及其动态再结晶动力学行为进行研究。结果表明,当ln Z>33.37时,300M钢应力-应变曲线呈双峰不连续动态再结晶型,热变形过程发生两轮动态再结晶;当ln Z<33.37时,300M钢的应力-应变曲线呈单峰不连续动态再结晶型,热变形过程仅发生一轮动态再结晶。根据压缩实验结果,分别构建300M钢第一轮动态再结晶和第二轮动态再结晶的峰值应变、临界应变、平均晶粒尺寸和体积分数动力学模型。  相似文献   

17.
锻造方式对7075铝合金锻件动态再结晶的影响   总被引:7,自引:0,他引:7  
利用金相(OM)、透射电镜(TEM)对7075铝合金热变形显微组织进行了观察。实验表明:在热锻条件下,7075铝合金完全可以发生动态再结晶并通过动态再结晶产生细小的再结晶晶粒。动态再结晶的方式为不连续动态再结晶,形核机制为亚晶转动、聚合形核;其临界应变值和加工道次有关,道次越多,临界值越低。在相同Z值下,再结晶晶粒尺寸随着应变的增加而减小。弥散的第二相粒子在动态再结晶过程中起了重要作用。  相似文献   

18.
采用Gleeble-3800热模拟压缩试验机对热等静压态FGH96合金进行了不同温度和应变速率的等温热压缩试验,研究了FGH96合金在变形温度分别为1040、1070、1100、1130 ℃,应变速率为0.001、0.01、0.1和1 s-1,最大真应变为0.7条件下的高温热变形行为,分析了真应力-真应变曲线,建立了本构方程,并利用Origin软件构建了热加工图,结合变形温度和应变速率对组织的影响确定了FGH96合金合适的热加工参数。结果表明,热等静压态FGH96合金的真应力-真应变曲线呈现典型的动态再结晶特征,其峰值应力随变形温度的降低和应变速率的增加而增加,结合本构方程、热加工图以及微观组织确定了FGH96合金合适的热加工区域为变形温度1060~1080 ℃,应变速率0.0001~0.004 s-1。  相似文献   

19.
The hot workability and dynamic recrystallization (DRX) mechanisms of pure nickel N6 were systematically investigated using hot compression tests. Based on hot compression data, the constitutive equation of N6 was developed and its reliability was verified. Its hot processing map was constructed, and combined with microstructural observations, a semi-quantitative response relationship between hot deformation parameters and microstructure was established. The DRX process of N6 is a thermally activated process and particularly sensitive to the strain rate. The optimal hot processing parameters for N6 were determined to be 950-1050 °C and 0.1-1 s-1. Furthermore, it was proven that the dominant nucleation mechanism is discontinuous DRX characterized by grain boundary bulging and twins assisting nucleation, while the continuous DRX characterized by subgrains combined with rotation is an inactive nucleation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号