首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation and chemical leaching effects of a nonequilibrium Al0.6(Fe25Cu75)0.4 powder produced by rod milling is described. X-ray diffraction, transmission electron microscopy, differential scanning calorimetry and vibrating sample magnetometry were used to characterize both the as-milled and leached specimens. After 400 h of milling, only the bcc AlFe phase with an amorphous phase was detected in the XRD patterns. The crystallite size for the bcc AlFe phase (110) after 400 h of milling was about 5.3 nm. The peak temperature and the crystallization temperature of the as-milled powders were 448.7 and 428.0 °C, respectively. Al atoms leaching from the as-milled bcc AlFe powders in the L1 condition did not alter the diffraction pattern significantly, even though Al atoms had been removed. After the L1 specimen was annealed at 500 °C for 1 h, the bcc AlFe phase transformed to the fcc Cu, Fe, and CuFe2O4 phases. The peak widths of L1 and L2 specimens were similar, but became broader than that of the as-milled powder. The saturation magnetization decreased with increasing milling time, and a value of 10.4 emu/g was reached after 400 h of milling. After cooling the specimen from 750 °C, the magnetization slowly increased at approximately 491.4 °C, indicating that the bcc AlFe phase had transformed to the fcc Cu and Fe phases.  相似文献   

2.
Nanocrystalline Al60Ni40 and Ni have been obtained by rod milling Al and Ni powder mixtures and chemical leaching Al atoms from the rod-milled Al60Ni40, respectively. The rod-milled alloy powders retained their bcc structure after being treated at room temperature and at 85 °C with a 25–30 wt.% KOH solution. The leached powders are very active and easily explode when they come into contact with air. The leached powders were transformed to a ferromagnetic fcc phase at high temperature. On cooling of the specimen from 600 °C, spontaneous magnetization M sharply increased at about 350 °C, indicating that the bcc phase was transformed to an fcc phase. It has been confirmed that the leaching temperature and annealing temperature and KOH concentration have a considerable effect on structural and magnetic properties.  相似文献   

3.
An amorphous Fe73.5Cu1Nb3Si13.5B9 alloy was prepared by the rapid solidification technique. The rapidly quenched alloys have been annealed in the temperature range from 490 to 550 °C for 90 min and their structure was investigated by using X-ray diffraction (XRD). After annealing, at crystallization temperature, the microstructure of the samples composed of nanocrystalline Fe3Si grains surrounded by the residual amorphous phase. The crystal fractions of the annealed samples were evaluated by heat capacity measurements. Heat capacities of the as-quenched and annealed samples were measured at different temperatures between 15 and 40 K. This method is useful for evaluating small changes in the amount of crystalline phase and provides a new tool for finding the nanocrystalline fraction. The volume fraction of the crystalline phase increased from 15.92 to 94.21% as annealing temperature increased from 490 to 550 °C.  相似文献   

4.
Ni0.65Zn0.35Cu0.1Fe1.9O4 nanoparticles fabricated by a polyvinyl alcohol (PVA) sol–gel process have been investigated by infrared spectra (IR), X-ray diffraction (XRD), transmission electron microscope (TEM) and Mössbauer spectroscopy measurements. The particles annealed at and above 250 °C are single phase NiZnCu ferrite with spinel structure. Particles annealed at and above 350 °C behave ferrimagnetically, while sample annealed at 250 °C is simultaneously paramagnetic and ferrimagnetic. In addition, the transition from the paramagnetic to the ferrimagnetic state can be observed in sample annealed at 250 °C as the measuring temperature decreases from 260 °C to liquid nitrogen temperature. The magnetic properties of NiZnCu ferrite nanoparticles are clearly size-dependent. The saturation magnetization increases with the annealing temperature. The coercivity of NiZnCu ferrite nanoparticles reaches a maximum when the annealing temperature is 550 °C.  相似文献   

5.
The PrBa2−xSrxCu3Oδ solid solution was investigated by means of X-ray powder diffraction in combination with Rietveld analysis. The Sr-doped Pr123 single phase could be synthesized at 950 °C in air. The solubility of PrBa2−xSrxCu3Oδ solid solution is 0.2≤x≤0.6. The structure of PrBa2−xSrxCu3Oδ is orthorhombic for x=0.2. The structure transforms into tetragonal for 0.3≤x≤0.6. In the PrBa2−xSrxCu3Oδ structure, Sr ions can replace Ba ions, the highest value is x=0.6 under our experimental condition. But Sr ions could not replace Pr ions. Furthermore Pr ions could not occupy the sites of Ba ions in the PrBa2−xSrxCu3Oδ system. Both ionic radii and chemical properties play an important role in the mutual substitution of Pr, Ba and Sr ions in the Pr123 structure of the PrBa2−xSrxCu3Oδ system.  相似文献   

6.
In this study, the influence of the glass addition and sintering parameters on the densification and mechanical properties of tetragonal zirconia polycrystals (3Y-TZP) ceramics were evaluated. High-purity tetragonal ZrO2 powder and La2O3-rich glass were used as starting powders. Two compositions based on ZrO2 and containing 5 wt.% and 10 wt.% of La2O3-rich glass were studied in this work. The starting powders were mixed/milled by planetary milling, dried at 90 °C for 24 h, sieved through a 60 mesh screen and uniaxially cold pressed under 80 MPa. The samples were sintered in air at 1200 °C, 1300 °C, 1400 °C for 60 min and at 1450 °C for 120 min, with heating and cooling rates of 10 °C/min. Sintered samples were characterized by relative density, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Hardness and fracture toughness were obtained by Vickers indentation method. Dense sintered samples were obtained for all conditions. Furthermore, only tetragonal-ZrO2 was identified as crystalline phase in sintered samples, independently of the conditions studied. Samples sintered at 1300 °C for 60 min presented the optimal mechanical properties with hardness and fracture toughness values near to 12 GPa and 8.5 MPa m1/2, respectively.  相似文献   

7.
The effect of high-energy ball milling and subsequent annealing on the mixture of MgO and Nb2O5 has been investigated. X-ray diffraction (XRD) measurement indicates that an amorphous phase is produced after milling for 5 h, while traces of MgNb2O6 crystallized from the amorphous phase during prolonged milling. Significant crystallization of MgNb2O6 from the amorphous state is observed after annealing at 500 °C, while the reaction of the remaining MgO and Nb2O5 does not take place at this temperature. Single phase MgNb2O6 can be achieved for all the milled samples at 700 °C. No significant grain growth is observed when the milled powders were annealed at temperature below 900 °C. Almost fully dense MgNb2O6 ceramics are obtained after annealing at 1100 °C from the as-milled powders.  相似文献   

8.
Two nanostructured Al-Cu-Fe alloys, Al64Cu24Fe12 and Al62.5Cu25.2Fe12.3, have been studied. Icosahedral quasicrystalline (ψ) Al64Cu24Fe12 and crystalline cubic (β) Al62.5Cu25.2Fe12.3 cylindrical ingots were first produced using normal casting techniques. High-energy mechanical milling was then conducted to obtain ψ icosahedral and β intermetallic nanostructured powders. Electrochemical impedance spectroscopy, linear polarization resistance, and potentiodynamic polarization were used to investigate the electrochemical corrosion characteristics of the powders in solutions with different pH values. Current density (i corr), polarization resistance (R p), and impedance modulus (|Z|) were determined. The results showed that regardless of pH value, increasing the solution temperature enhanced the corrosion resistance of the both phases. However, the electrochemical behavior of the ψ phase indicated that its stability depends on the submerged exposure time in neutral and alkaline environments. This behavior was related to the type of corrosion products present on the surfaces of the particles along with the diffusion and charge-transfer mechanisms of the corrosion process.  相似文献   

9.
Effects of precursor milling on phase evolution and morphology of mullite (3Al2O3·2SiO2) processed by solid-state reaction have been investigated. Alumina and silica powders were used as starting materials and milling was taken place in a medium energy conventional ball mill and a high-energy planetary ball mill. Milling in a conventional ball mill although decreases mullite formation temperature by 200 °C, but does not considerably change mullite phase morphology. Use of a planetary ball mill after 40 h of milling showed to be much more effective in activating the oxide precursors, and mullitization temperature was reduced to below 900 °C. Whisker like mullite was formed after sintering at 1450 °C for 2 h and volume fraction of this structure was increased by increasing the milling time. XRD results showed that samples mechanically activated for 20 h in the planetary ball mill were fully transformed to mullite after sintering at 1450 °C, whereas Al2O3 and SiO2 phases were still detected in the samples milled in the conventional ball mill for 20 h and then sintered at the same conditions.  相似文献   

10.
The subsolidus phase relations of the system La2O3-CaO-CuO sintered at 980 °C in air have been investigated by X-ray powder diffraction (XRD). The system can be divided into seven three-phase regions and two extended two-phase regions. In this system there exist two binary compounds La2CuO4 and Ca2CuO3, two ternary compounds La2CaCu2O6 and LaCa2Cu5Oγ and one solid solution La2-χCaχCuO4-δ. The effects of Ca2+ substitution for La3+ on the superconductivity and crystal structure of La2CuO4 have been investigated by XRD, differential thermal analysis, electrical and oxygen content measurements.  相似文献   

11.
X-ray diffraction, Mössbauer spectroscopy and magnetization measurements were used to study the structure and some magnetic properties of Fe50Ge50 and Fe62Ge38 prepared by mechanical alloying from the elemental powders. In both cases in the early stages of milling the intermediate paramagnetic FeGe2 phase was formed. The mechanical alloying process of Fe50Ge50 resulted in the formation of the paramagnetic FeGe (B20) phase with an average crystallite size of about 15 nm. In the case of the Fe62Ge38, the ferromagnetic Fe5Ge3 (β) phase with a Curie temperature of about 430 K was obtained. The average crystallite size was about 9 nm. The average hyperfine magnetic field of about 16 T allowed it to determine that more than four germanium atoms exist in the nearest environment of the 57Fe isotopes in the Fe5Ge3 phase.  相似文献   

12.
Nano-crystalline SrAl2O4 with spinel structure was successfully prepared at 700 °C using amorphous SrAl2(diethylenetriaminepentaacetic acid (DTPA)1.6)(H2O)4 as precursor. The precursor was synthesized by a simple inorganic reaction and decomposed into SrAl2O4 at temperatures above 500 °C, which was proved by DTA–TGA and X-ray photoelectron spectroscopy (XPS) analysis. X-ray diffraction (XRD) results illustrated that a crystalline SrAl2O4 phase can form at 700 °C, which is about 600 °C lower than that used in the traditional method. The crystalline SrAl2O4 prepared at 900 °C for 2 h had a crystal size of about 28 nm and a grain size of about 80 nm, and its BET surface area can reach 28.056 m2/g. Calcination temperature and time had a weak effect on crystal size.  相似文献   

13.
X-ray diffraction (XRD) and differential scanning calorimetry (DSC) were employed to investigate the effect of cooling rate on crystallization behavior of metallic Zr70Cu20Ni10 glass. It is found that all DSC traces of the metallic Zr70Cu20Ni10 glasses under different cooling rates exhibit two exothermic peaks, indicating that the crystallization of metallic Zr70Cu20Ni10 glass proceeds through a double-stage mode. In our previous studies, we have concluded that the first exothermic reaction mainly corresponds to the precipitation of the Zr2Cu phase, and the second one is mainly due to the formation of nanoscale Zr2Ni particles. It is observed that there exists a close relationship between the cooling rate and thermodynamic parameters of metallic Zr70Cu20Ni10 glass, such as the onset crystallization temperature Tx, the first peak temperature Tp1 and the second one Tp2. The above three thermodynamic parameters reach a maximum when the surface velocity is 30 m/s. This effect is just similar to that of the Ni concentration, which has been discussed in our previous works. The activation energy for crystallization and the local Avrami exponent of metallic Zr–Cu–Ni glass under isothermal annealing conditions also exhibit a similar tendency with the cooling rate.  相似文献   

14.
Microstructure evolution in CoNiGa shape memory alloys   总被引:2,自引:0,他引:2  
Magnetic shape memory CoNiGa alloys hold great promise as new smart materials due to the good ductility and a wide range of martensitic transformation (MT) temperatures as well as magnetic transition points. This paper reports the results of investigations on the equilibrium phase constitution and microstructure evolution in quenched or aged CoNiGa alloys using the optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) methods. The dendritic γ phase decreases as lowering of Ga content in studied two series of samples (Co50Ni50 − xGax, x = 0–50 and Co100 − 2yNiyGay, y = 15–35). Some γ′ precipitates with different morphologies were found in given alloys conducted with water quenching (WQ) at 800 °C or long-time ageing at 300 °C. After 800 °C quenching, the γ′ phase has a rod-like shape for the Co50Ni30Ga20 alloy but shows a Widmanstätten morphology as Ga increases to 25 at%, and trends to be block structure in further high Ga content alloy. In the case of 300 °C aged alloys, the γ′ particles prefer to nucleate in interior of γ phase or at the interface of β–γ. We also presented an illustrative vertical section phase diagram keeping 50 at% Co, and isothermal section phase diagram at 1150 and 800 °C of the CoNiGa system. Based on the schematic ternary phase diagram, the composition scope which potentially holds over the magnetic pure martensite phase structure at room temperature (RT) was pointed out. It is believed that this optimized range alloys would play an important role in the functional materials design for application.  相似文献   

15.
The in-situ XRD measurements on dehydrogenation/rehydrogenation of the Li–Mg–N–H system were performed in this work. The ballmilled mixture of 8LiH and 3Mg(NH2)2 as a hydrogenated phase gradually changed into Li2NH as a dehydrogenated phase during heat-treatment at 200 °C in vacuum for 50 h. Neither Mg-related phases nor other intermediate phases were recognized in the dehydrogenated phase. With respect to the hydrogenation process, the dehydrogenated state gradually returned to the mixed phase of the LiH and Mg(NH2)2 without appearance of any intermediate phases during heat treatment at 200 °C under 5 MPa H2 for 37 h and during slow cooling down to room temperature through 24 h. In the hydrogenation process at 200 °C under 1 MPa H2, however, the growing up of the LiNH2 and LiH phase was observed in the XRD profiles before the 3Mg(NH2)2 and 8LiH phases were formed as the final hydrogenated state. This indicates that the LiNH2 and LiH phase essentially appears as an intermediate state in the Li–Mg–N–H system composed of 3Mg(NH2)2 and 8LiH.  相似文献   

16.
In this study we present the results on complex structural changes of the Co70Fe5Si10B15 amorphous alloy induced during heating in the temperature range between 20 and 1000 °C. The structural and phase transformation changes were correlated with DTA, XRD and SEM properties. It is shown that initial Co70Fe5Si10B15 alloy during heating undergoes complex crystallochemical changes. In the range between ambient temperature and near 400 °C, investigated alloy retains the solid-state amorphous properties. Prolonged heating induces complete transformation to crystalline solid state. The solid–solid amorphous to crystalline state transformation process is completed at 500 °C, when two nanocrystalline phase alloy systems are formed. Prolonged thermal treatment between 600 and 1000 °C, influenced further elemental segregation and phase transition. At 1000 °C, the composite material consisting of two FCC cobalt-rich alloys and a hexagonal unidentified alloy are formed.  相似文献   

17.
High-energy dry ball-mill and post-anneal processing were applied to synthesize MgTiO3 and Mg2TiO4 single crystalline phases from the predetermined compositions of MgO–TiO2 powder mixtures. Also, the experiments were performed to show that it is possible to prepare MgAl2O4 single crystalline phase from the predetermined composition of MgO–Al2O3 powder mixture only by employing high-energy dry ball milling, i.e. without post-annealing the milled samples. In contrast, fully developed single crystalline powders of MgTiO3 and Mg2TiO4 were obtained after post-annealing the milled samples for 1 h at 900 and 1200 °C, respectively.  相似文献   

18.
The nature of the magnetic ordering of Tb4Sb3 compound (Th3P4-type, cubic; cI28, space group , No. 220, a = 0.91518(7) nm) has been investigated by using the techniques of magnetization and neutron diffraction. AC and DC magnetisation measurements indicate antiferromagnetic ordering at 108 K in zero magnetic field that is accompanied by a field-induced metamagnetic transition to a ferromagnetic state, in fields above 0.3 T. Neutron diffraction experiment in zero applied magnetic field shows that below TN = 112(4) K Tb4Sb3 exhibits an antiferromagnetic flat spiral-type ordering with propagation vector K1 = [±1/8, ±1/8, ±1/8]. The magnetic moment of Tb atoms is found to be MTb = 6.7(3) μB at 80 K. The magnetic moment of Tb atoms lie in the (1 1 1) plane of Tb4Sb3 unit cell (the cone axis arranges along [1 1 1] direction with cone angle β = 90°). Below TN2  50 K, Tb4Sb3 shows second antiferromagnetic transition with K2 = [1/2, 1/2, 1/2] with possible re-orientation of Tb magnetic moments.  相似文献   

19.
The experimental study of the system Sb–Zn by differential calorimetry made it possible to plot the whole phase diagram. We found the stability domains of existence of the stoichiometric compound SbZn and the solid solutions which extend on both sides from the compositions corresponding to Sb3Zn4 (forms γ and β) and Sb2Zn3 (forms η and ζ). Sb3Zn4 and Sb2Zn3 are both congruent melting compounds at 566 and 568 °C respectively with an eutectic transformation at 563 °C:
liquid(43% Zn) ↔ Sb3Zn4(γ) + Sb2Zn3(η).
Sb2Zn3(ζ) is formed at 407 °C starting from Sb3Zn4(β) and zinc. The decomposition, by cooling, occurs around 360 °C.  相似文献   

20.
A neutron diffraction investigation has been carried out on the trigonal La2O3-type (hP5, space group , No. 164; also CaAl2Si2-type) YbMn2Sb2 intermetallic. A two-step synthesis route has been tried in this work, and successfully utilised to prepare single phase samples of this compound. This study shows that YbMn2Sb2 presents antiferromagnetic ordering below 120 K. The magnetic structure of this intermetallic consists of antiferromagnetically coupled magnetic moments of the manganese atoms, in the Mn1 (1/3, 2/3, ZMn) and Mn2 (2/3, 1/3, 1 − ZMn) sites; the direction of magnetic moments of manganese atoms forming a φ and a θ angle, respectively with the X- and the Z-axis. At 4 K the magnetic moment of the Mn1 atom is μMn = 3.6(1) μB, with φ = 0° and θ = 62(4)°, whilst the Mn2 atom has a magnetic moment μMn = 3.6(1) μB, with φ = 0° and θ = 242(4)°. On the other hand, in this compound no local moment was detected on the Yb site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号