首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complete conversion from Si into Si3N4 was achieved after 2 h nitridation at 1400 °C by using in-situ formed Fe2O3 nano-particles (NPs) as a catalyst. Such a synthesis condition was remarkably milder than that (>1450 °C for many hours) required by the conventional Si nitridation method. Density functional theory (DFT) calculations suggest that Fe2O3 catalyst accelerates the Si nitridation via weakening the bond strength of absorbed N2 molecule. Furthermore, Si3N4(w)-SiC composites prepared by the present catalytic nitridation method showed excellent high-temperature properties including modulus of rupture (MOR of 29.9 MPa at 1400 °C), thermal shock resistance (residual MOR percentage of 50% at ΔT = 1300 °C), as well as good oxidation resistance and cryolite corrosion resistance against molten cryolite. It can be concluded that, Fe2O3 NPs not only greatly accelerated the Si nitridation and Si3N4 formation, but also facilitated the epitaxial growth of reinforcement phase of Si3N4 whisker in the Si3N4(w)-SiC composites.  相似文献   

2.
Highly porous Si3N4 ceramics have been fabricated via freeze casting and sintering. The as-sintered samples were pre-oxidized at 1200–1400 °C for 15 min. The effect of pre-oxidation temperature on the microstructure, flexural strength, and dielectric properties of porous Si3N4 ceramics were investigated. As the pre-oxidation temperature increased from 1200 °C to 1400 °C, firstly, the flexural strength of the pre-oxidized specimens remained almost constant at 1200 °C, and then decreased to 14.2 MPa at 1300 °C, but finally increased to 25.6 MPa at 1400 °C, while the dielectric constant decreased gradually over the frequencies ranging from 8.2 GHz to 12.4 GHz. This simple process allows porous Si3N4 ceramics to have ultra-low dielectric constant and moderate strength, which will be feasible in broadband radome applications at high temperatures.  相似文献   

3.
In situ synthesis of Si2N2O/Si3N4 composite ceramics was conducted via thermolysis of novel polysilyloxycarbodiimide ([SiOSi(NCN)3]n) precursors between 1000 and 1500 °C in nitrogen atmosphere. The relative structures of Si2N2O/Si3N4 composite ceramics were explained by the structural evolution observed by electron energy-loss spectroscopy but also by Fourier transform infrared and 29Si-NMR spectrometry. An amorphous single-phase Si2N2O ceramic with porous structure with pore size of 10–20 μm in diameter was obtained via a pyrolyzed process at 1000 °C. After heat-treatment at 1400 °C, a composite ceramic was obtained composed of 53.2 wt.% Si2N2O and 46.8 wt.% Si3N4 phases. The amount of Si2N2O phase in the composite ceramic decreased further after heat-treatment at 1500 °C and a crystalline product containing 12.8 wt.% Si2N2O and 87.2 wt.% Si3N4 phases was obtained. In addition, it is interesting that residual carbon in the ceramic composite nearly disappeared and no SiC phase was observed in the final Si2N2O/Si3N4 composite.  相似文献   

4.
Si3N4–SiCN composite ceramics were successfully fabricated through precursor infiltration pyrolysis (PIP) method using polysilazane as precursor and porous Si3N4 as preform. After annealed at temperatures varying from 900 °C to 1400 °C, the phase composition of SiCN ceramics, electrical conductivity and dielectric properties of Si3N4–SiCN composite ceramics over the frequency range of 8.2–12.4 GHz (X-band) were investigated. With the increase of annealing temperature, the content of amorphous SiCN decreases and that of N-doped SiC nano-crystals increases, which leads to the increase of electrical conductivity. After annealed at 1400 °C, the average real and imaginary permittivities of Si3N4–SiCN composite ceramics are increased from 3.7 and 4.68 × 10?3 to 8.9 and 1.8, respectively. The permittivities of Si3N4–SiCN composite ceramics show a typical ternary polarization relaxation, which are ascribed to the electric dipole and grain boundary relaxation of N-doped SiC nano-crystals, and dielectric polarization relaxation of the in situ formed graphite. The Si3N4–SiCN composite ceramics exhibit a promising prospect as microwave absorbing materials.  相似文献   

5.
《Ceramics International》2017,43(10):7948-7950
Graded Si3N4 ceramics with hard surface and tough core were prepared by two-step hot pressing with the homogenous starting composition. The inner Si3N4 layer was firstly hot-pressed at 1800 °C, subsequently covered with Si3N4 powders on both sides, and finally hot-pressed at 1600 °C. After two-step hot pressing, the resulting ceramics exhibited a zoned microstructure, differentiated by the phase assemblage of Si3N4 and grain size. The outer layers were well bonded to the inner layer. The outer layer exhibited bimodal and fine-grained microstructure, whereas the inner layer exhibited bimodal and coarse-grained microstructure. Vickers hardness of outer and inner layers were 18.1±0.2 GPa and 16.0±0.2 GPa, respectively, and fracture toughness were 4.2±0.1 MPa m1/2 and 5.5±0.2 MPa m1/2, respectively.  相似文献   

6.
The nitridation of elemental silicon powder at 900–1475 °C was studied by X-ray photoelectron spectroscopy (XPS), X-ray excited Auger electron spectroscopy (XAES), XRD, thermal analysis and 29Si MAS NMR. An initial mass gain of about 12% at 1250–1300 °C corresponds to the formation of a product layer about 0·2 μm thick (assuming spherical particles). XPS and XAES show that in this temperature range, the surface atomic ratio of N/Si increases and the ratio O/Si decreases as the surface layer is converted to Si2N2O. XRD shows that above 1300 °C the Si is rapidly converted to a mixture of α- and β-Si3N4, the latter predominating >1400 °C. In this temperature range there are only slight changes in the composition of the surface material, which at the higher temperatures regains a small amount of an oxidised surface layer. By contrast, in the interval 1400–1475 °C, the 29Si MAS NMR chemical shift of the elemental Si changes progressively from about −80 ppm to −70 ppm, in tandem with the growth of the Si3N4 resonance at about −48 ppm. Possible reasons for this previously unreported change in the Si chemical shift are discussed. ©  相似文献   

7.
Sintered reaction-bonded silicon nitride (SRBSN) with improved thermal conductivity was achieved after the green compact of submicron Si powder containing 4.22 wt% impurity oxygen and Y2O3-MgO additives was nitrided at 1400 °C for 6 h and then post-sintered at 1900 °C for 12 h using a BN/graphite powder bed. During nitridation, the BN/10 wt% C powder bed altered the chemistry of secondary phase by promoting the removal of SiO2, which led to the formation of larger, purer and more elongated Si3N4 grains in RBSN sample. Moreover, it also enhanced the elimination of SiO2 and residual Y2Si3O3N4 secondary phase during post-sintering, and thus induced larger elongated grains, decreased lattice oxygen content and increased Si3N4-Si3N4 contiguity in final SRBSN product. These characteristics enabled SRBSN to obtain significant increase (∼40.7%) in thermal conductivity from 86 to 121 W  m−1  K−1 without obvious decrease in electrical resistivity after the use of BN/graphite instead of BN as powder bed.  相似文献   

8.
《Ceramics International》2017,43(2):2150-2154
Sintered Si3N4 ceramics were prepared from an ɑ-Si3N4/β-Si3N4 whiskers composite powder in-situ synthesized via carbothermal reduction at 1400–1550 °C in a nitrogen atmosphere from SiO2, C, Ni, and NaCl mixture. Reaction temperatures and holding time for the composite powder, and mechanical properties of sintered Si3N4 were investigated. In the synthesized composite powder, the in-situ β-Si3N4 whiskers displayed an aspect ratio of 20–40 and a diameter of 60–150 nm, which was mainly dependent on the synthesis temperature and holding time. The flexural strength, fracture toughness and hardness of the sintered Si3N4 material reached 794±136 MPa, 8.60±1.33 MPa m1/2 and 19.00±0.87 GPa, respectively. The in-situ synthesized β-Si3N4 whiskers played a role in toughening and strengthening by whiskers pulling out and crack deflection.  相似文献   

9.
《Ceramics International》2017,43(13):10123-10129
Dense Si3N4 ceramic with BaO-Al2O3-SiO2 low temperature glass powders as sintering aids were prepared by pressureless sintering techniques at a relatively low temperature (1550 °C). Four kinds of glass powders of compositions melting at 1120 °C, 1300 °C, 1400 °C and 1500 °C, respectively, have been introduced as sintering aids. XRD results demonstrate that the BaO-Al2O3-SiO2 glass powders reacted with BaAl2O4 and converted into hexagonal celsian, which is a high-temperature phase with melting point of 1760 °C, so being beneficial to the high temperature properties of the materials. In addition, a portion of α-Si3N4 transformed to rod like β-Si3N4 with high aspect ratio as shown by XRD and SEM analysis. The bulk density increased with the rise of the melting temperature of the BaO-Al2O3-SiO2 glass powders, the sample obtained with the BaO-Al2O3-SiO2 glass powder melting at 1500 °C reaching a maximum density of 98.8%, an high flexural strength (373 MPa) and a fracture toughness (4.8 MPa m1/2).  相似文献   

10.
Environmental barrier coatings are required to protect Si3N4 against hot gas corrosion and enable its application in gas turbines, among which yttrium and ytterbium silicate-coatings stand out. Thus, the polymer-derived ceramic route was used to synthesize these silicates for basic investigations regarding their intrinsic properties from a mixture of Y2O3 or Yb2O3 powders and the oligosilazane Durazane 1800. After pyrolysis above 1200 °C in air, the silicates are predominant phases. The corrosion behaviour of the resulting composites was tested at 1400 °C for 80 h in moist environments. The material containing x2-Yb2SiO5 and Yb2Si2O7 undergoes the lowest corrosion rate (−1.8 μg cm−2 h−1). Finally, the processing of Y2O3/Durazane 1800 as well-adherent, crack-free and thick (40 μm) coatings for Si3N4 was achieved after pyrolysis at 1400 °C in air. The coating consisted of an Y2O3/Y2SiO5 top-layer and an Y2O3/Y2Si2O7 interlayer due to the interaction of the coating system with the substrate.  相似文献   

11.
Si3N4-ZrB2 ceramics were hot-pressed at 1500 °C using self-synthesized fine ZrB2 powders containing 2.0 wt% B2O3 together with MgO-Re2O3 (Re = Y, Yb) additives. Both Si3N4 and ZrB2 grains in the hot-pressed ceramics were featured with elongated and equiaxed morphology. The presence of elongated Si3N4 and ZrB2 grains led to the partial texture of the ceramics under the applied pressure. Vickers hardness and fracture toughness of Si3N4-ZrB2 ceramics with MgO-Re2O3 additives prepared at low temperature were about 19–20 GPa and 9–11 MPa m1/2, respectively, higher than the reported values of Si3N4-based ceramics prepared at high temperature (1800 °C or above) under the same test method.  相似文献   

12.
The oxidation in air of Si3N4-based ceramics containing 35 vol.% of TiN secondary phase and different amounts of sintering additives has been studied at different temperatures up to 1400 °C in dry or humid environment. The oxidation starts by crystal growth of TiO2 at the surface, then a multilayered scale develops under the rutile layer from 1000 °C. This subscale is composed of silicon nitride in which TiN particles are oxidized to agglomerates of rutile, glass and pores. The oxidation process is controlled by the matter transports, which take place in the intergranular phase. These transport phenomena are affected by the changes in distribution and composition of the glassy phase and by humidity which modifies the glass network structure and thus the in-diffusion rate. From 1200 °C, Si3N4 grains are also oxidized, the additional glass formed closes the residual porosities yielding scales more compact and developing an autoprotective behavior. At 1400 °C, glass phase crystallizes into cristobalite and the rutile top layer becomes discontinuous. Only composites with low amounts of sinter additives keep an autoprotective oxidation mode.  相似文献   

13.
A process of recycling used abrasive SiC powder after grinding Si wafer was proposed to raw powder for sintering. The used SiC powder could be successfully converted to composite powders consisting of SiC particle and Si3N4 whisker via a heat treatment in N2 atmosphere, in which iron oxide acted as a catalyst in the vapor–liquid–solid (VLS) formation of Si3N4. With the addition of 3 mass% Al2O3 and 1 mass% Y2O3, the composite powders sintered at 1900 °C for 2 h exhibited a 3-point bending strength of 626 ± 48 MPa and a fracture toughness of 3.9 ± 0.1 MPa m1/2, which were significantly enhanced as compared with those of using recovered powder merely composed of SiC particle. The strength and fracture toughness of the sintered material could be improved by optimization of chemical and heat treatment parameters and controlling the amount of sintering additives and hot pressing conditions.  相似文献   

14.
《Ceramics International》2017,43(18):16248-16257
Si3N4-based composite ceramic tool materials with (W,Ti)C as particle reinforced phase were fabricated by microwave sintering. The effects of the fraction of (W,Ti)C and sintering temperature on the mechanical properties, phase transformation and microstructure of Si3N4-based ceramics were investigated. The frictional characteristics of the microwave sintered Si3N4-based ceramics were also studied. The results showed that the (W,Ti)C would hinder the densification and phase transformation of Si3N4 ceramics, while it enhanced the aspect-ratio of β-Si3N4 which promoted the mechanical properties. The Si3N4-based composite ceramics reinforced by 15 wt% (W,Ti)C sintered at 1600 °C for 10 min by microwave sintering exhibited the optimum mechanical properties. Its relative density, Vickers hardness and fracture toughness were 95.73 ± 0.21%, 15.92 ± 0.09 GPa and 7.01 ± 0.14 MPa m1/2, respectively. Compared to the monolithic Si3N4 ceramics by microwave sintering, the sintering temperature decreased 100 °C,the Vickers hardness and fracture toughness were enhanced by 6.7% and 8.9%, respectively. The friction coefficient and wear rate of the Si3N4/(W,Ti)C sliding against the bearing steel increased initially and then decreased with the increase of the mass fraction of (W,Ti)C., and the friction coefficient and wear rate reached the minimum value while the fraction of (W,Ti)C was 15 wt%.  相似文献   

15.
《Ceramics International》2016,42(7):8240-8246
Aeschynite-type EuTiNbO6 fine phosphor with sufficient luminescence intensity was directly formed as homogeneous cuboid particles with high crystallinity in the range of 1–2 μm from precursor solution mixtures of EuCl3, TiOSO4, and NbCl5 under weakly basic conditions via hydrothermal treatment at 240 °C for 5 h. The as-prepared aeschynite phase stably existed after heating at 1000–1400 °C for 1 h in air. Under excitation at wavelengths of 395 nm, among all samples before and after heating in air, the as-prepared EuTiNbO6 fine crystals before heating emitted luminescence with the highest intensity in the red spectral region with strong red and weak orange light corresponding to 5D0→7F2 and 5D0→7F1 transitions of Eu3+, respectively. The amorphous coprecipitation powder crystallized into euxenite-type phase at 700–1000 °C and transformed into aeschynite-type phase at 1000–1200 °C. High-temperature heating at 1400 °C was essential for the coprecipitation powder to obtain almost a single phase of aeschynite-type EuTiNbO6 and sufficient emission intensity.  相似文献   

16.
The Co22.5Si77.5 (at.%) braze was used to bond porous Si3N4 ceramics. The effects of brazing temperature on microstructure and the bonding strength of the joint were studied. The results reveal that no visible reaction layer was observed. The corresponding joint strength was low. In order to improve the joint strength a carbon coated modification of the porous Si3N4 substrate was suggested. The impact of this modification on the joint properties was examined. It was established that a SiC reaction layer with a thickness from ∼15 μm to ∼65 μm was formed at the interface and SiC nanowires were observed when the temperature increased from 1280 °C to 1340 °C. The maximum shear strength of the carbon coated and uncoated joints were 115 MPa and 44 MPa, respectively. The significant improvement of the joint strength was attributed to the SiC reaction layer and a strengthening by the presence of SiC nanowires. .  相似文献   

17.
C-axis textured Si3N4 with a high thermal conductivity of 176 W m−1 K−1 along the grain alignment direction was fabricated by slip casting raw α-Si3N4 powder seeded with near-equiaxed β-Si3N4 particles and Y2O3–MgSiN2 as sintering additives in a rotating strong magnetic field of 12 T, followed by gas pressure sintering at 1900 °C for 12 h at a nitrogen pressure of 1 MPa. The green material reached a relative density of 57%, with slip casting and the sintered material exhibited a relative density of 99% and a Lotgering orientation factor of 0.98. The morphology of the β-Si3N4 seeds had little effect on the texture development and thermal anisotropy of textured Si3N4. The technique developed provides highly conductive Si3N4 with conductivity to the thickness direction, which is a major advantage in practical use. The technique is also simple, inexpensive and effective for producing textured Si3N4 with high thermal conductivity of over 170 W m−1 K−1.  相似文献   

18.
《Ceramics International》2017,43(12):9153-9157
Si3N4 based composites were successfully sintered by spark plasma sintering using low cost BaCO3, SiO2 and Al2O3 as additives. Powder mixtures were sintered at 1600–1800 °C for 5 and 10 min. Displacement-temperature-time (DTT) diagrams were used to evaluate the sintering behavior. Shrinkage curve revealed that densification was performed between 1100 and 1700 °C. The specimen sintered at 1700 °C showed the maximum relative density (99.8±0.1%), flexural strength (352±16 MPa), Vickers harness (11±0.1 GPa) and toughness (5.6±0.05 MPa m1/2).  相似文献   

19.
Thermal conductivity of Si3N4 containing large β-Si3N4 particles as seeds for grain growth was investigated. Seeds addition promotes growth of β-Si3N4 grains during sintering to develop the duplex microstructure. The thermal conductivity of the material sintered at 1900 °C improved up to 106 W m−1 K−1, although that of unseeded material was 77 Wm−1 K−1. Seeds addition leads to reduction of the sintering temperature with developing the duplex microstructure and with improving the thermal conductivity, which benefits in terms of production cost of Si3N4 ceramics with thermal conductivity. ©  相似文献   

20.
Silicon nitride ceramics have been densified with polymer-derived SiAlOC sintering aid. Dense samples were prepared at relatively mild temperatures (1600 °C) from blends with 30 wt.% of pyrolysed SiAlOC additives. Decreasing the SiAlOC aid content to 15 wt.% resulted in porous Si3N4 samples (~85% rel. density). The properties of dense samples were influenced by the remaining SiAlOC glass (HV = 15.5 GPa, KIC = 4 MPa m1/2). Increasing the sintering temperature to 1780 °C for 5 min significantly changed the phase composition and properties of the composites. The major phase was O′-sialon in the sintered samples. Additional annealing of the samples at 1530 °C for 16 h further decreased the amount of the residual glassy phase and consequently affected the mechanical properties. The Vickers hardness of dense samples was 18.5 GPa and the fracture resistance ranged between 4.0 and 4.5 MPa m1/2. The compressive creep test (1400 °C/100 MPa/24 h) of the SNA30-A sample sintered at 1600 °C for 30 min without an additional crystallisation step showed a promising low creep rate of 8.6 × 10?8 s?1. Further improvement of creep resistance is expected for the crystallised samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号