首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
This paper presents a hybrid technique for the classification of the magnetic resonance images (MRI). The proposed hybrid technique consists of three stages, namely, feature extraction, dimensionality reduction, and classification. In the first stage, we have obtained the features related to MRI images using discrete wavelet transformation (DWT). In the second stage, the features of magnetic resonance images have been reduced, using principal component analysis (PCA), to the more essential features. In the classification stage, two classifiers have been developed. The first classifier based on feed forward back-propagation artificial neural network (FP-ANN) and the second classifier is based on k-nearest neighbor (k-NN). The classifiers have been used to classify subjects as normal or abnormal MRI human images. A classification with a success of 97% and 98% has been obtained by FP-ANN and k-NN, respectively. This result shows that the proposed technique is robust and effective compared with other recent work.  相似文献   

2.
Digital Image Processing (DIP) is a well-developed field in the biological sciences which involves classification and detection of tumour. In medical science, automatic brain tumor diagnosis is an important phase. Brain tumor detection is performed by Computer-Aided Diagnosis (CAD) systems. The human image creation is greatly achieved by an approach namely medical imaging which is exploited for medical and research purposes. Recently Automatic brain tumor detection from MRI images has become the emerging research area of medical research. Brain tumor diagnosis mainly performed for obtaining exact location, orientation and area of abnormal tissues. Cancer and edema regions inference from brain magnetic resonance imaging (MRI) information is considered to be great challenge due to brain tumors complex structure, blurred borders, besides exterior features like noise. The noise compassion is mainly reduced along with segmentation stability by suggesting efficient hybrid clustering method merged with morphological process for brain cancer segmentation. Combined form of Median Modified Wiener filter (CMMWF) is chiefly deployed for denoising, and morphological operations which in turn eliminate nonbrain tissue, efficiently dropping technique’s sensitivity to noise. The proposed system contains the main phases such as preprocessing, brain tumor extraction and post processing. Image segmentation is greatly achieved by presenting Intuitionist Possibilistic Fuzzy Clustering (IPFC) algorithm. The algorithm’s stability is greatly enhanced by this clustering along with clustering parameters sensitivity reduction. Then, the post processing of images are done through morphological operations along with Hybrid Median filtering (HMF) for attaining exact tumors representations. Additionally, suggested algorithm is substantiated by comparing with other existing segmentation algorithms. The outcomes reveal that suggested algorithm achieves improved outcomes pertaining to accuracy, sensitivity, specificity, and recall.  相似文献   

3.
4.
Malignant and benign types of tumor infiltrated in human brain are diagnosed with the help of an MRI scanner. With the slice images obtained using an MRI scanner, certain image processing techniques are utilized to have a clear anatomy of brain tissues. One such image processing technique is hybrid self-organizing map (SOM) with fuzzy K means (FKM) algorithm, which offers successful identification of tumor and good segmentation of tissue regions present inside the tissues of brain. The proposed algorithm is efficient in terms of Jaccard Index, Dice Overlap Index (DOI), sensitivity, specificity, peak signal to noise ratio (PSNR), mean square error (MSE), computational time and memory requirement. The algorithm proposed through this paper has better data handling capacities and it also performs efficient processing upon the input magnetic resonance (MR) brain images. Automatic detection of tumor region in MR (magnetic resonance) brain images has a high impact in helping the radio surgeons assess the size of the tumor present inside the tissues of brain and it also supports in identifying the exact topographical location of tumor region. The proposed hybrid SOM-FKM algorithm assists the radio surgeon by providing an automated tissue segmentation and tumor identification, thus enhancing radio therapeutic procedures. The efficiency of the proposed technique is verified using the clinical images obtained from four patients, along with the images taken from Harvard Brain Repository.  相似文献   

5.
脑肿瘤分割是医学图像处理中的一项重要内容,其目的是辅助医生做出准确的诊断和治疗,在临床脑部医学领域具有重要的实用价值。核磁共振成像(MRI)是临床医生研究脑部组织结构的主要影像学工具,为了使更多研究者对MRI脑肿瘤图像分割理论及其发展进行探索,本文对该领域研究现状进行综述。首先总结了用于MRI脑肿瘤图像分割的方法,并对现有方法进行了分类,即分为监督分割和非监督分割;然后重点综述了基于深度学习的脑肿瘤分割方法,在研究其关键技术基础上归纳了优化策略;最后介绍了脑肿瘤分割(BraTS)挑战,并结合挑战中所用方法展望了脑肿瘤分割领域未来的发展趋势。MRI脑肿瘤图像分割领域的研究已经取得了一些显著进展,尤其是深度学习的发展为该领域的研究提供了新的思路。但由于脑肿瘤在大小、形状和位置方面的高度变化,以及脑肿瘤图像数据有限且类别不平衡等问题,使得脑肿瘤图像分割仍是一个极具挑战的课题。由于分割过程缺乏可解释性和透明性,如何将全自动分割方法应用于临床试验,还需要进行深入研究。  相似文献   

6.
Magnetic resonance imaging (MRI) is a non-invasive diagnostic tool very frequently used for brain imaging. The classification of MRI images of normal and pathological brain conditions pose a challenge from technological and clinical point of view, since MR imaging focuses on soft tissue anatomy and generates a large information set and these can act as a mirror reflecting the conditions of the brain. A new approach by integrating wavelet entropy based spider web plots and probabilistic neural network is proposed for the classification of MRI brain images. The two step method for classification uses (1) wavelet entropy based spider web plots for the feature extraction and (2) probabilistic neural network for the classification. The spider web plot is a geometric construction drawn using the entropy of the wavelet approximation components and the areas calculated are used as feature set for classification. Probabilistic neural network provides a general solution to the pattern classification problems and the classification accuracy is found to be 100%.  相似文献   

7.
Extreme learning machine (ELM) is a single-hidden layer feed-forward neural network with an efficient learning algorithm. Conventionally an ELM is trained using all the data based on the least square solution, and thus it may suffer from overfitting. In this paper, we present a new method of data and feature mixed ensemble based extreme learning machine (DFEN-ELM). DFEN-ELM combines data ensemble and feature subspace ensemble to tackle the overfitting problem and it takes advantage of the fast speed of ELM when building ensembles of classifiers. Both one-class and two-class ensemble based ELM have been studied. Experiments were conducted on computed tomography (CT) data for liver tumor detection and segmentation as well as magnetic resonance imaging (MRI) data for rodent brain segmentation. To improve the ensembles with new training data, sequential kernel learning is adopted further in the experiments on CT data for speedy retraining and iteratively enhancing the image segmentation performance. Experiment results on different testing cases and various testing datasets demonstrate that DFEN-ELM is a robust and efficient algorithm for medical object detection and segmentation.  相似文献   

8.
磁共振成像(MRI)作为一种典型的非侵入式成像技术,可产生高质量的无损伤和无颅骨伪影的脑影像,为脑肿瘤的诊断和治疗提供更为全面的信息,是脑肿瘤诊疗的主要技术手段。MRI脑肿瘤自动分割利用计算机技术从多模态脑影像中自动将肿瘤区(坏死区、水肿区、非增强肿瘤区和增强肿瘤区)和正常组织区进行分割和标注,对于辅助脑肿瘤的诊疗具有重要作用。本文对MRI脑肿瘤图像分割的深度学习方法进行了总结与分析,给出了各类方法的基本思想、网络架构形式、代表性改进方案以及优缺点总结等,并给出了部分典型方法在BraTS(multimodal brain tumor segmentation)数据集上的性能表现与分析结果。通过对该领域研究方法进行综述,对现有基于深度学习的MRI脑肿瘤分割研究方法进行了梳理,作为新的发展方向,MRI脑肿瘤图像分割的深度学习方法较传统方法已取得明显的性能提升,已成为领域主流方法并持续展现出良好的发展前景,有助于进一步推动MRI脑肿瘤分割在临床诊疗上的应用。  相似文献   

9.
医学影像是产前筛查、诊断、治疗引导和评估的重要工具,能有效避免胎儿脑的发育异常。近年来,磁共振成像在产前诊断中愈加重要,而实现自动、定量、精确地分析胎儿脑磁共振图像依赖于可靠的图像分割。因此,胎儿脑磁共振图像分割具有十分重要的临床意义与研究价值。由于胎儿图像中存在组织器官多、图像质量差及结构变化快等问题,胎儿脑磁共振图像的分割面临着巨大的困难与挑战。目前,尚未有文献对该领域的方法进行系统性的总结和分析,尤其是基于深度学习的方法。本文针对胎儿脑磁共振图像分割方法进行综述,首先,对胎儿脑磁共振图像的主要公开图谱/数据集进行详细说明;接着,对脑实质提取、组织分割和病灶分割方法进行全面的分类与分析;最后,对胎儿脑磁共振图像分割面临的挑战及未来的研究方向进行总结与展望。  相似文献   

10.
深度学习能自动从大样本数据中学习获得优良的特征表达,有效提升各种机器学习任务的性能,已广泛应用于信号处理、计算机视觉和自然语言处理等诸多领域。基于深度学习的医学影像智能计算是目前智慧医疗领域的研究热点,其中深度学习方法已经应用于医学影像处理、分析的全流程。由于医学影像内在的特殊性、复杂性,特别是考虑到医学影像领域普遍存在的小样本问题,相关学习任务和应用场景对深度学习方法提出了新要求。本文以临床常用的X射线、超声、计算机断层扫描和磁共振等4种影像为例,对深度学习在医学影像中的应用现状进行综述,特别面向图像重建、病灶检测、图像分割、图像配准和计算机辅助诊断这5大任务的主要深度学习方法的进展进行介绍,并对发展趋势进行展望。  相似文献   

11.
Sensorineural hearing loss (SNHL) is a common hearing disorder or deafness which accounts for about 90% of the reported hearing loss. Magnetic resonance imaging (MRI) has been found to be an effective neuroimaging technique for detecting SNHL. However, manual detection methods, mainly based on the visual inspection of MRI, are cumbersome, time-consuming and need skilled supervision. Hence, there is a great need to design a computer-aided detection system for fast, accurate and automated detection of SNHL. This paper presents a new method for automated diagnosis of SNHL through brain MR images. Fast discrete curvelet transform is employed for image decomposition. The features are extracted from various decomposed subbands at different scales and orientations. A set of discriminant features is then derived using PCA+LDA algorithm. A hybrid classifier is suggested by integrating extreme learning machine and Jaya optimization with mutation (MJaya-ELM) to distinguish hearing loss images from healthy MR images. The proposed hybrid method overcomes the drawbacks of traditional ELM and other learning algorithms for single layer feedforward neural network. The concept of mutation is introduced to conventional Jaya optimization (MJaya) for improving the global search ability of the solutions by providing additional diversity. The proposed system is evaluated on a well-studied database. The comparison results demonstrate that the proposed scheme outperforms the existing schemes in terms of overall accuracy and sensitivity over different classes. The effectiveness of the proposed MJaya-ELM algorithm is also compared with its counterparts such as PSO-ELM, DE-ELM, and Jaya-ELM, and the results indicate the superiority of MJaya-ELM.  相似文献   

12.
目的 磁共振成像(magnetic resonance imaging,MRI)作为一种非侵入性的软组织对比成像方式,可以提供有关脑肿瘤的形状、大小和位置等有价值的信息,是用于脑肿瘤患者检查的主要方法,在脑肿瘤分割任务中发挥着重要作用。由于脑肿瘤本身复杂多变的形态、模糊的边界、低对比度以及样本梯度复杂等问题,导致高精度脑肿瘤MRI图像分割非常具有挑战性,目前主要依靠专业医师手动分割,费时且可重复性差。对此,本文提出一种基于U-Net的改进模型,即CSPU-Net (cross stage partial U-Net)脑肿瘤分割网络,以实现高精度的脑肿瘤MRI图像分割。方法 CSPU-Net在U-Net结构的上下采样中分别加入两种跨阶段局部网络结构(cross stage partial module,CSP)提取图像特征,结合GDL (general Dice loss)和WCE (weighted cross entropy)两种损失函数解决训练样本类别不平衡问题。结果 在BraTS (brain tumor segmentation)2018和BraTS 2019两个数据集上进行实验,在BraTS 2018数据集中的整体肿瘤分割精度、核心肿瘤分割精度和增强肿瘤分割精度分别为87.9%、80.6%和77.3%,相比于传统U-Net的改进模型(ResU-Net)分别提升了0.80%、1.60%和2.20%。在BraTS 2019数据集中的整体肿瘤分割精度、核心肿瘤分割精度和增强肿瘤分割精度分别为87.8%、77.9%和70.7%,相比于ResU-Net模型提升了0.70%、1.30%和1.40%。结论 本文提出的跨阶段局部网络结构,通过增加梯度路径、减少信息损失,可以有效提高脑肿瘤分割精度,实验结果证明了该模块对脑肿瘤分割任务的有效性。  相似文献   

13.

Brain tumor classification is a significant issue in Computer-Aided Diagnosis (CAD) for clinical applications. The classification process is crucial and plays a major role to diagnosis the brain tumors. The existing works focus on recognizing brain tumors through diverse classification approaches. Though, the conventional classification approaches are suffered from high false alarm rates. To improve the early-stage brain tumor diagnosis via classification, the main intention of this paper is to introduce a novel brain tumor segmentation and classification model. The dataset gathered from the two benchmark sources is subjected to pre-processing for enhancing the quality of images, and skull stripping for extracting the region of interest from the skull. Further, a new segmentation approach termed Adaptive Fuzzy Active Contour Fusion Model (AFACFM) with a new fitness function is developed. Here, the enhancement of the segmentation is performed by the hybrid Jaya-Tunicate Swarm Algorithm (J-TSA). Next, the combination of Convolutional Neural Network (CNN) and Fuzzy classifier is performed in the final classification phase. The deep features are extracted from the pooling layer of CNN, which are subjected to the Fuzzy classifier for classifying the images into normal, benign, and malignant. As a modification, the parameters of the CNN and Fuzzy classifier are tuned by the proposed J-TSA. The comparative analysis is finally done, and this work demonstrates the potential of using deep learning in MRI images to provide a non-invasive tool for simultaneous and automated tumor segmentation and classification. Through the performance analysis, the accuracy of the designed CNN-Fuzzy using J-TSA was 77%, 29%, 19%, 8.7%, 6.8%, and 1.6% enhanced than SVM, NN, DBN, CNN, Fuzzy, and CNN-Fuzzy, respectively.

  相似文献   

14.
With advancements in machine learning algorithms and computer aided diagnostic (CAD) systems, the performance of automated analysis of radiological images has improved substantially in recent times. However, the lack of integration between the radiologist and CAD systems restrains the rate of progress as well as the reach of such advancements in clinical use. This article aims to improve the clinical efficiency of ultrasound based CAD systems for classification of breast lesions by integrating back-propagation artificial neural network (BPANN), support vector machine (SVM) and radiologist feedback. The acquired breast ultrasound images were subjected to wavelet based filtering in order to reduce speckle noise followed by feature extraction, feature selection and classification. Experiments on a database of 178 ultrasound images of breast anomalies (88 benign and 90 malignant) show that the proposed methodology achieves classification accuracy of 98.621% and 98.276%, respectively, when all 457 and 19 most relevant features selected by multi-criteria feature selection method were used for classification. The accuracy achieved is significantly higher than that using conventional classifiers based on BPANN and SVM. Further, it is found that integrating expert opinion in CAD systems improves its overall performance. The quantitative results obtained are discussed in light of some recently reported studies.  相似文献   

15.
P.D. Sathya  R. Kayalvizhi 《Neurocomputing》2011,74(14-15):2299-2313
Segmentation of brain magnetic resonance images (MRIs) can be used to identify various neural disorders. The MRI segmentation facilitates in extracting different brain tissues such as white matter, gray matter and cerebrospinal fluids. Segmentation of these tissues helps in determining the volume of the tissues in three-dimensional brain MRI, which yields in analyzing many neural disorders such as epilepsy and Alzheimer disease. In this article, multilevel thresholding based on adaptive bacterial foraging (ABF) algorithm is presented for brain MRI segmentation. The proposed ABF algorithm employs an adaptive step size to improve both exploration and exploitation capability of the BF algorithm. Maximization of the measure of separability on the basis of the entropy (Kapur) method and the between-class variance (Otsu) method, which are the two popular thresholding techniques, are employed to evaluate the performance of the proposed method. Application results to axial, T2-weighted brain MRI slices are provided to show the performance of the proposed segmentation approach. These results are compared with bacterial foraging (BF) algorithm, particle swarm optimization (PSO) algorithm and genetic algorithm (GA) in terms of solution quality, robustness and computational efficiency.  相似文献   

16.

In the medical field, image segmentation is a paramount and challenging task. The head and vertebral column make up the central nervous system (CNS), which control all the paramount functions. These include thinking, speaking, and gestures. The uncontrolled growth in the CNS can affect a person’s thinking of communication or movement. The tumor is known as the uncontrolled growth of cells in brain. The tumor can be recognized by MRI image. Brain tumor detection is mostly affected with inaccurate classification. This proposed work designed a novel classification and segmentation algorithm for the brain tumor detection. The proposed system uses the Adaptive fuzzy deep neural network with frog leap optimization to detect normality and abnormality of the image. Accurate classification is achieved with error minimization strategy through our proposed method. Then, the abnormal image is segmented using adaptive flying squirrel algorithm and the size of the tumor is detected, which is used to find out the severity of the tumor. The proposed work is implemented in the MATLAB simulation platform. The proposed work Accuracy, sensitivity, specificity, false positive rate and false negative rate are 99.6%, 99.9%, 99.8%, 0.0043 and 0.543, respectively. The detection accuracy is better in our proposed system than the existing teaching and learning based algorithm, social group algorithm and deep neural network.

  相似文献   

17.
Cardiac amyloidosis is an uncommon disease that has been known for a long time. Moreover, modern advancement in noninvasive imaging of heart via ultrasound, magnetic resonance imaging has enhanced the detection of secret cardiac amyloidosis in patients identified with the heart disease. This article focused on detecting the heart disease especially cardiac amyloidosis on electro cardio gram images using recent technology of both machine learning and deep learning approaches. In addition, apart from detecting the disease on images, we are categorizing the heart images as normal and cardiac amyloidosis if any deviations occur. For CA disease identification along with its classification, 300 cardiac images have taken and those images are analyzed using machine learning algorithms namely nearest centroid, gradient boosting and random forest. Several metrics such as precision, recall, f-score, sensitivity, accuracy, and confusion matrix based on binary classification which classifies the images into positive (CA) and negative (non-CA) are estimated. Among these approaches, gradient boosting method achieves 95% accuracy as better outcomes which measure the model performance in detecting cardiac amyloidosis disease as well as ECG images are categorized into either normal or abnormal via classification metrics. Furthermore, we applied deep learning based neural network “DeepNet” model is applied on augmented data along with CNN which attains 93% accuracy in CA disease identification.  相似文献   

18.

The quality of health services provided by medical centers varies widely, and there is often a large gap between the optimal standard of services when judged based on the locality of patients (rural or urban environments). This quality gap can have serious health consequences and major implications for patient’s timely and correct treatment. These deficiencies can manifest, for example, as a lack of quality services, misdiagnosis, medication errors, and unavailability of trained professionals. In medical imaging, MRI analysis assists radiologists and surgeons in developing patient treatment plans. Accurate segmentation of anomalous tissues and its correct 3D visualization plays an important role inappropriate treatment. In this context, we aim to develop an intelligent computer-aided diagnostic system focusing on human brain MRI analysis. We present brain tumor detection, segmentation, and its 3D visualization system, providing quality clinical services, regardless of geographical location, and level of expertise of medical specialists. In this research, brain magnetic resonance (MR) images are segmented using a semi-automatic and adaptive threshold selection method. After segmentation, the tumor is classified into malignant and benign based on a bag of words (BoW) driven robust support vector machine (SVM) classification model. The BoW feature extraction method is further amplified via speeded up robust features (SURF) incorporating its procedure of interest point selection. Finally, 3D visualization of the brain and tumor is achieved using volume marching cube algorithm which is used for rendering medical data. The effectiveness of the proposed system is verified over a dataset collected from 30 patients and achieved 99% accuracy. A subjective comparative analysis is also carried out between the proposed method and two state-of-the-art tools ITK-SNAP and 3D-Doctor. Experimental results indicate that the proposed system performed better than existing systems and assists radiologist determining the size, shape, and location of the tumor in the human brain.

  相似文献   

19.
计算机断层扫描(computed tomography,CT)可应用于前列腺癌的检查诊断,但是它对软组织结构对比度不高,因此很难从中分割病变;而核磁共振成像(nuclear magnetic resonance imaging,MRI)具有较高的对比度,能为病变提供丰富的影像信息。为了提升CT图像的前列腺分割精度,本文提出一种新的基于深度学习的多模态U形网络图像分割模型MM-unet,充分运用MRI图像与CT图像间信息互补的特点。具体地,首先运用迁移学习思想分别训练MRI与CT图像的初始分割模型,然后通过设计一种新型的多模态损失函数MM-Loss,建立不同模态分割模型之间的联系,联合训练基于MRI与CT图像的MM-unet。为验证所提模型MM-unet的有效性,我们在某合作医院提供的Prostate数据集上进行了实验,实验结果表明,与U-net方法相比,MM-unet能够获得高出3个百分点Dice的CT图像分割精度。  相似文献   

20.
Computed tomography images are widely used in the diagnosis of intracranial hematoma and hemorrhage. This paper presents a new approach for automated diagnosis based on classification of the normal and abnormal images of computed tomography. The computed tomography images used in the classification consists of non-enhanced computed tomography images. The proposed method consists of four stages namely pre-processing, feature extraction, feature reduction and classification. The discrete wavelet transform coefficients are the features extracted in this method. The essential coefficients are selected by the principal component analysis. The features derived are used to train the binary classifier, which infer automatically whether the image is that of a normal brain or a pathological brain, suffering from brain lesion. The proposed method has been evaluated on a dataset of 80 images. A classification with a success of 92, 97 and 98 % has been obtained by artificial neural network, k-nearest neighbor and support vector machine, respectively. This result shows that the proposed technique is robust and effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号