首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 569 毫秒
1.
柴油超深度加氢脱硫催化剂的失活存在初期快速失活阶段和中期缓慢失活阶段,催化剂失活主要是由于积炭覆盖活性中心引起的。针对催化剂中期失活规律,将原料油性质与失活速率常数相关联,建立柴油超深度加氢脱硫催化剂失活模型,并对其进行验证。结果表明,所建立的失活模型可以较为准确地预测催化剂的失活速率,预测值与实测值的平均相对误差在5%以内。  相似文献   

2.
针对乙烯装置C_3气相加氢Pd/Al_2O_3催化剂失活的问题,对新鲜的、失活的和再生的催化剂进行了多种分析,对不同来源的C_3原料气的硫、砷含量进行了测定。分析结果表明,催化剂的失活是砷、硫、铁及积炭等多种因素造成的。对C_3气相加氢工艺提出了改进建议。  相似文献   

3.
基于对加氢催化剂失活因素如(积炭形成、活性相长大)的有效控制,相继开发了构建通畅扩散孔道的载体制备技术、稳定活性相的金属负载技术以及削减活性位积炭的催化剂制备技术,由此创建了“反应物分子与活性相最优匹配”的新型催化剂制备技术(ROCKET+技术)平台。基于该平台成功开发了高稳定性超深度脱硫和多环芳烃深度饱和柴油加氢催化剂RS-3100。与参比剂相比,RS-3100催化剂的稳定性提高30%以上,工业装填堆密度降低20.5%,具有高性价比。RS-3100催化剂适合于中高压、原料中含有二次加工柴油的加氢装置,可以在较缓和条件下生产硫质量分数低于10 μg/g、多环芳烃质量分数小于7%的国Ⅵ标准柴油调合组分。  相似文献   

4.
为了使原油得到最大的利用,可以把渣油加氢提高氢含量。加氢通常使用以Al_2O_3或Al_2O_3-SiO_2为载体的含有Co、Ni、Mo和W等不同组元的催化剂。在渣油催化加氢过程中催化剂失活是主要问题。形成的焦炭堵塞催化剂的活性中心,主要是由于堵塞孔嘴降低催化剂的活性。镍和钒的沉积阻塞了反应分子的通道,使之永久失活。甚至工业催化剂再生也  相似文献   

5.
为了保护都市的大气环境,要求柴油的含硫量在500μg/g以下。用Co-Mo/Al_2O_3催化剂和日本炼油厂现行的操作条件,中东原油柴油的含硫量只能降到5000μg/g。虽然,在较高的加氢温度下,能使柴油深度脱硫,但是脱硫后油品的颜色很差。业已证明两段加氢处理比一段加氢处理有较好的脱硫效果。然而,通过对催化剂的不同组合方式和反应条件试验的结果表明,在第一段和第二段分别用Co-Mo/Al_2O_3和Ni-Mo/Al_2_3催化剂,反应条件分别为360℃、  相似文献   

6.
采用浸渍法制备了CeO_2改性的Ru/Al_2O_3、Pd/Al_2O_3加氢脱硫催化剂,分别考察了硫化态和还原态贵金属催化剂对噻吩加氢脱硫反应性能的影响,并运用XRD、TPR、TPR-S等手段对催化剂进行表征。结果表明,CeO_2的改性导致还原态Pd/Al_2O_3催化剂初始活性提高了26%,但硫化态Ru/Al_2O_3催化剂活性下降。CeO_2对Pd/Al_2O_3催化剂的改性机理在于Pd与Ce发生了强相互作用,所生成的Ce~(3+)成为了新的不同于B酸的噻吩吸附活化中心。而在Ru/Al_2O_3中,CeO_2增强了Ru-S键,导致活性中心硫空穴的减少。  相似文献   

7.
采用化学气相沉积法制备了Ni/Al_2O_3催化剂,对其进行了加氢活性评价和表征.结果表明,在合适的条件下,可以得到具有高分散度和高活性的Ni/Al_2O_3催化剂.在Al_2O_3载体中引入助剂可以减弱活性组分Ni与Al_2O_3载体之间的相互作用,有利于NiO还原成Ni活性中心.化学气相沉积法制备的Ni/Al_2O_3催化剂比传统浸渍法制备的Ni/Al_2O_3催化剂具有更高的加氢活性.透射电镜结果表明,Al_2O_3载体表面上Ni活性相呈纳米分布,具有较高的分散度,该催化剂中Ni质量分数可降低32.5%,而其加氢催化活性不降低.化学气相沉积法制备的Ni/Al_2O_3催化剂可用于白油加氢精制.  相似文献   

8.
燃料油深度加氢脱硫催化剂的研究进展   总被引:7,自引:6,他引:1  
综述了燃料油(主要是汽油和柴油)深度加氢脱硫催化剂的研究进展。汽油精制的主要问题是在深度加氢脱硫的同时减少由于烯烃饱和造成的辛烷值损失;柴油深度加氢脱硫主要是脱除其中的难脱除硫化物及稠环芳烃加氢饱和。TiO_2和 ZrO_2等载体负载的金属硫化物催化剂比传统加氢脱硫催化剂的活性高。助剂 P 和 F 能减弱载体-金属间相互作用,在 Co(Ni)-Mo(W)/γ-Al_2O_3催化剂中生成更多的高活性Ⅱ型中心。螯合剂能延迟 Co 的硫化,有利于 Co-Mo-S 活性中心的生成。过渡金属磷化物催化剂表现出更高的脱硫、脱氮活性及良好的活性稳定性,它的主要缺点是金属磷化物的分散度较差,活性中心数目较少。过渡金属碳化物和氮化物催化剂对脱硫、脱氮的初活性较高,但使用后表面金属被硫化,催化活性下降。  相似文献   

9.
介绍用于乙炔加氢反应的Pd/纤维Al_2O_3催化剂,考察了它的特性。Pd/纤维Al_2O_3有较高的加氢活性和选择性,稳定性也较好。在常温下可用于大量乙烯存在下的微量乙炔的脱除,乙烯基本无损失。Pd/纤维Al_2O_3表面酸性低,聚合物生成量少。强化条件下考察催化剂的失活,表明聚合物阻塞内孔是其失活的原因之一。  相似文献   

10.
面对柴油低硫、低芳烃双重质量要求的挑战,基于对柴油加氢催化剂失活规律以及加氢脱硫、芳烃饱和反应过程化学的深入认识,通过发明高性能活性相构建技术和高分散活性相稳定技术创新了柴油加氢催化剂制备技术,开发了高活性、高稳定性柴油加氢催化剂;同时开发了定向强化目标反应的RTS工艺,解决了工业装置难以长周期兼顾超深度脱硫和多环芳烃深度饱和的难题。通过在催化剂制备技术和柴油加氢工艺方面的创新,形成了柴油高效清洁化关键技术,可低成本、高效率和长周期稳定生产满足国V/国VI标准要求的柴油产品。目前,该关键技术已成功应用于36套工业装置,总加工能力超过50 Mt/a,为我国油品质量快速升级提供了技术支撑。  相似文献   

11.
在固定床反应装置上考察了噻吩、二丙基硫醚和正丁硫醇对裂解C_9一段加氢Ni/Al_2O_3催化剂加氢活性的影响,采用XPS和XRD对催化剂进行了表征,分析了硫化物影响Ni/Al_2O_3催化剂加氢活性的机理。实验结果表明,在考察的反应条件下,噻吩和二丙基硫醚影响Ni/Al_2O_3催化剂加氢活性的原因是硫化物吸附在催化剂的活性中心,占据了加氢活性位,降低了反应分子与催化剂活性位的接触机会;正丁硫醇影响Ni/Al_2O_3催化剂加氢活性的原因是活性金属Ni与正丁硫醇分解生成的H_2S反应生成硫化镍,催化剂的加氢活性相变为硫化态,同时正丁硫醇和生成的硫醚类硫化物吸附在催化剂的活性中心,占据了加氢活性位,使催化剂活性降低。  相似文献   

12.
利用直馏柴油加氢脱硫反应研究初活稳定过程对NiMo/Al2O3催化剂加氢脱硫活性稳定性的影响。分别采用干法和湿法两种硫化方式制备的NiMo/Al2O3催化剂在初活稳定条件下处理48h,对比评价了无初活稳定和经48h初活稳定处理工况下催化剂活性以及积炭量发生的变化,并借助XPS,TEM,TG-MASS和碳含量分析等方法对样品进行了表征。结果表明:采用干法或湿法硫化,初活稳定过程均可以提高硫化后NiMo/Al2O3催化剂的稳定性;初活稳定过程促进了活性相上积炭量的增加,而这些积炭的存在可起到适度修饰活性相表面结构的作用,有助于提高催化剂的稳定性。  相似文献   

13.
利用活性白土脱除原料中的氮化物,得到硫含量相同而氮含量不同的3种柴油原料,以Ni-Mo-W/γ-Al_2O_3和Co-Mo/γ-Al_2O_3为催化剂,利用中型固定床加氢装置考察氮化物对超深度加氢脱硫反应的影响。实验结果表明,在真实油品复杂体系中,氮化物对加氢脱硫反应存在明显的抑制作用,并且随脱硫深度的增加,氮化物的影响越明显;在原料氮含量较低的情况下,Ni-Mo-W型催化剂上加氢脱硫反应的表观活化能明显低于Co-Mo型催化剂,加氢脱硫反应的活性显著高于Co-Mo型催化剂,并且随LHSV的增加,两者相差越大。采用氮含量为6.7μg/g的原料油C时,在反应温度355℃、氢分压6.4 MPa、LHSV=6.0 h~(-1)、氢油体积比300的条件下,在Ni-Mo-W型催化剂上的产品硫含量为10.0μg/g。  相似文献   

14.
利用直馏柴油加氢脱硫反应研究初活稳定过程对NiMo/Al2O3催化剂加氢脱硫活性稳定性的影响。分别采用干法和湿法两种硫化方式制备的NiMo/Al2O3催化剂在初活稳定条件下处理48 h。对比评价了无初活稳定和经48 h初活稳定处理工况下催化剂活性以及积炭量发生的变化。借助XPS,TEM,TG-MASS和碳含量分析等方法对样品进行了表征。结果表明:采用干法或湿法硫化,初活稳定过程均可以提高新鲜硫化后NiMo/Al2O3催化剂的稳定性;初活稳定过程促进了活性相上积炭量的增加,而这些积炭的存在可起到适度修饰活性相表面结构的作用,有助于提高催化剂的稳定性。  相似文献   

15.
采用中型固定床加氢装置考察了含氮化合物对柴油超深度加氢脱硫Ni-Mo-W型催化剂运行稳定性的影响。通过元素分析、N2吸附-脱附、热重 质谱(TG-MS)联用、X射线光电子能谱(XPS)、高分辨透射电镜(TEM)等表征手段研究了催化剂失活的主要原因。实验结果表明:原料添加含氮化合物后,主要影响了催化剂的初活性,运转初期反应温度提高了7~10℃,但对催化剂的稳定性影响不大。根据催化剂失活原因的分析发现,原料添加含氮化合物前后,催化剂失活的主要原因均与其表面积炭的形成、孔体积的损失和边缘W比例的下降密切相关。  相似文献   

16.
察了芳烃对柴油超深度加氢脱硫(HDS)反应的影响。通过在实际油品中添加甲苯和萘,得到硫含量、氮含量和芳烃含量相同,而芳烃类型不同的2种加氢原料,采用NiW/Al2O3和CoMo/Al2O3催化剂分别进行超深度加氢脱硫实验。利用分子模拟技术计算了真实油品中典型的硫化物(DBT和4〖DK〗,6 DMDBT)以及甲苯和萘在NiW/Al2O3和CoMo/Al2O3催化剂表面的吸附热(Ea)。结果表明,由于芳烃与4 MDBT、 4〖DK〗,6 DMDBT类化合物在催化剂上的竞争吸附和吸附能的差异,在NiW/Al2O3和CoMo/Al2O3催化剂催化作用下,双环芳烃对柴油超深度加氢脱硫反应的抑制作用均强于单环芳烃;芳烃对以NiW/Al2O3为催化剂的柴油超深度加氢脱硫反应速率的影响强于其对以CoMo/Al2O3为催化剂的柴油超深度加氢脱硫反应速率的影响。  相似文献   

17.
《广石化科技》2005,(1):33-33
中石化石科院在2004年柴油超深度脱硫催化剂RS-1000的研制取得突破性进展。该催化剂在柴油深度和超深度脱硫反应中具有高的活性、活性稳定性及原料适应性,相对脱硫、脱氮活性分别是RN-10催化剂的2.23~2.93倍和1.35~1.89倍,中试结果表明,采用RS-1000催化剂加工直馏柴油或者催化柴油都可以在常规加氢精致条件下生产硫含量小50μg/g或10μg/g的柴油产品。RS-1000催化剂对多种原料有较好的适应性,  相似文献   

18.
采用中型固定床加氢实验装置,以混合柴油为原料,对柴油加氢催化剂采用催速失活的方法进行处理,研究比较不同活性的柴油加氢NiMo催化剂的芳烃加氢饱和反应规律。结果表明,通过催速失活方法得到的催化剂相比新鲜剂发生了明显的失活,催化剂的活性损失随着反应时间增加、氢/油体积比减少而增加。在考虑催化剂活性损失的基础上建立三集总多环芳烃加氢饱和失活动力学模型,将计算得到的催速失活实验中活性系数与反应时间和氢/油体积比相关联,得到柴油加氢芳烃饱和活性系数模型,并通过失活动力学模型计算不同活性系数下多环芳烃含量的变化规律。  相似文献   

19.
用于催化脱氢反应的Ni_2P/Al_2O_3催化剂易于积炭失活。针对这一问题,设计并研究了其再生方案。失活后的Ni_2P/Al_2O_3催化剂在不同温度下烧炭后,以次磷酸铵(NH_4H_2PO_2)为补磷剂,对其进行补磷。采用热重-差示热分析(TG-DTA)确定失活催化剂烧炭温度,采用X射线衍射(XRD)表征烧炭后催化剂表面活性相变化,采用低温N_2吸附-脱附表征烧炭后催化剂孔结构变化;并以环己烷为模型化合物评价再生催化剂的脱氢催化性能。结果表明,700℃烧炭后Ni_2P/Al_2O_3催化剂表面大部分积炭被烧除,同时表面部分活性组分转化为NiO;然后以NH_4H_2PO_2为补磷剂,采用浸渍法补磷,当n(P)/n(Ni)=1时,补磷后催化剂催化环己烷脱氢反应的转化率为99.21%、苯产率为97.78%,此种烧炭-补磷再生催化剂的脱氢催化活性和目的产物选择性最佳。  相似文献   

20.
对传统Al_2O_3载体加以改进,研制出一种适用于掺炼劣质催化裂化(FCC)汽油的重整预加氢催化剂CoMoNi/Al_2O_3-SiO_2。该催化剂具有较高的加氢脱硫、脱氮及烯烃饱和性能,在反应压力为2.5 MPa、体积空速为4.0 h-1、氢油体积比为200∶1的工艺条件下,掺炼不同比例催化汽油时,加氢产品均能达到重整原料的要求。催化剂1 500 h活性稳定性试验结果表明,该催化剂具有良好的活性稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号