首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
随着无人机巡检作业方式应用越来越广泛,巡检过程中对障碍物检测并进行避障显得愈发关键。若无人机碰到杆塔或线路不仅会造成无人机自身的损坏,还会对居民用电造成影响,给检修带来麻烦。毫米波雷达、激光雷达、双目视觉传感器在机器人避障中有广泛应用。但是基于输电线路巡检的多旋翼无人机的实际情况,传感器器件的选型、尺寸、重量,以及障碍物信息与飞控的融合,显得尤为重要。通过对多旋翼无人机搭载毫米波雷达、双目视觉传感器、差分GPS进行了研究,采用多传感器融合方法检测障碍物,利用虚拟力场法(VFF)进行航迹重规划,并实际飞行验证。测试表明该方法对杆塔避障取得了较好的应用效果。  相似文献   

2.
在自动空中加油(AAR,automated aerialre fueling)对接过程中,加油机后方拖出的加油软管锥套受到加油机和受油机的双重气动干扰,呈现不规则摆动运动,受油机要实现与加油锥套的精确对接,要求其飞行控制系统具有鲁棒性和快速的自适应能力,为此提出采用自适应控制器方案,该方案以线性二次调节器(linear quadraticregulator,LQR)比例积分型控制器作为稳定闭环,在此基础上加入自适应控制器,仿真结果表明,采用自适应控制器的受油机自动空中加油飞行控制系统可以实现规定时间内的精确加油对接,既满足瞬态性能要求,又满足稳态精度要求,同时,还解决了由自适应参数跳动带来的舵机操纵过于频繁的问题.该方法可有效提高对接过程中受油机飞行控制系统的抗干扰能力,能够满足自动空中加油对接段的飞行控制要求.  相似文献   

3.
Given significant mobility advantages, UAVs have access to many locations that would be impossible for an unmanned ground vehicle to reach, but UAV research has historically focused on avoiding interactions with the environment. Recent advances in UAV size to payload and manipulator weight to payload ratios suggest the possibility of integration in the near future, opening the door to UAVs that can interact with their environment by manipulating objects. Therefore, we seek to investigate and develop the tools that will be necessary to perform manipulation tasks when this becomes a reality. We present our progress and results toward a design and physical system to emulate mobile manipulation by an unmanned aerial vehicle with dexterous arms and end effectors. To emulate the UAV, we utilize a six degree-of-freedom miniature gantry crane that provides the complete range of motion of a rotorcraft as well as ground truth information without the risk associated with free flight. Two four degree-of-freedom manipulators attached to the gantry system perform grasping tasks. Computer vision techniques and force feedback servoing provide target object and manipulator position feedback to the control hardware. To test and simulate our system, we leverage the OpenRAVE virtual environment and ROS software architecture. Because rotorcraft are inherently unstable, introduce ground effects, and experience changing flight dynamics under external loads, we seek to address the difficult task of maintaining a stable UAV platform while interacting with objects using multiple, dexterous arms. As a first step toward that goal, this paper describes the design of a system to emulate a flying, dexterous mobile manipulator.  相似文献   

4.
固定翼无人机在军事,国防,民用上都具有非常广泛的应用。无人机系统包括三大部分:无人机机体,无人机地面控制站以及无人机地面综合检测站。详细介绍了当前已交付使用的一种适应于多种型号的无人机地面综合实验平台,包括无人机地面飞行仿真和地面检测和故障诊断三个部分。从整体设计方案出发,从技术角度分析各个子系统的功能和设计方案。提出了可以应用于无人机地面实验平台的基于专家系统的遥控-遥测知识对的知识库的建立和通过搜索知识库的故障诊断方法。并以一个平台子系统为例介绍了以任务管理和数据流控制为核心的软硬件设计方案。  相似文献   

5.
Miniature unmanned aerial vehicles (UAVs) have attracted wide interest from researchers and developers because of their broad applications. In order to make a miniature UAV platform popular for civilian applications, one critical concern is the overall cost. However, lower cost generally means lower navigational accuracy and insufficient flight control performance, mainly due to the low graded avionics on the UAV. This paper introduces a data fusion system based on several low-priced sensors to improve the attitude estimation of a low-cost miniature fixed-wing UAV platform. The characteristics of each sensor and the calculation of attitude angles are carefully studied. The algorithms and implementation of the fusion system are described and explained in details. Ground test results with three sensor fusions are compared and analyzed, and flight test comparison results with two sensor fusions are also presented.  相似文献   

6.
Large‐scale aerial sensing missions can greatly benefit from the perpetual endurance capability provided by high‐performance low‐altitude solar‐powered unmanned aerial vehicles (UAVs). However, today these UAVs suffer from small payload capacity, low energetic margins, and high operational complexity. To tackle these problems, this paper presents four individual technical contributions and integrates them into an existing solar‐powered UAV system: First, a lightweight and power‐efficient day/night‐capable sensing system is discussed. Second, means to optimize the UAV platform to the specific payload and to thereby achieve sufficient energetic margins for day/night flight with payload are presented. Third, existing autonomous launch and landing functionality is extended for solar‐powered UAVs. Fourth, as a main contribution an extended Kalman filter (EKF)‐based autonomous thermal updraft tracking framework is developed. Its novelty is that it allows the end‐to‐end integration of the thermal‐induced roll moment into the estimation process. It is assessed against unscented Kalman filter and particle filter methods in simulation and implemented on the aircraft's low‐power autopilot. The complete system is verified during a 26 h search‐and‐rescue aerial sensing mock‐up mission that represents the first‐ever fully autonomous perpetual endurance flight of a small solar‐powered UAV with a day/night‐capable sensing payload. It also represents the first time that solar‐electric propulsion and autonomous thermal updraft tracking are combined in flight. In contrast to previous work that has focused on the energetic feasibility of perpetual flight, the individual technical contributions of this paper are considered core functionality to guarantee ease‐of‐use, effectivity, and reliability in future multiday aerial sensing operations with small solar‐powered UAVs.  相似文献   

7.
In this study, we present a system that manages multiple unmanned aerial vehicles (UAVs) for a search, pickup, and drop mission in the 2017 Mohamed Bin Zayed International Robotics Challenge (MBZIRC). Three UAVs picked up and dropped 23 circular and rectangular targets into a designated drop box. To control the operation of three UAVs flying over an arena of 90 × 60 m, we designed and integrated a set of technologies into our system: airspace allocation, communication framework among UAVs, anticollision based on geofencing, and a token‐based prioritization for coordination. The proposed UAV system uses a single GPS and its error of a few meters is solved by means of the following component technologies: (a) flight path generator based on one reference point, (b) vision‐based redefinition of a reference point for GPS correction, and (c) calibration of flight path to update the reference point. The pickup‐and‐drop mission is conducted via color‐ and shape‐based vision processing and a magnetic gripper to pickup and drop‐off the targets. Our proposed system is able to successfully manage three UAVs, recognize targets on the ground, and drop the targets into a drop box in the drop zone. Finally, we achieved fourth place among 18 teams in Challenge 3.  相似文献   

8.
在地面目标搜索任务中,无人机与传感器设备的安装交联和无人机的六自由度运动会使得无人机探测路径与飞行路径之间产生差异.因此,针对耦合作用给搜索任务带来的消极影响,将无人机本体的姿态测量信息引入到对云台的控制中,保证飞行路径与探测路径的协调.同时,针对目标跟踪任务,对因为无人机与目标的相对位置变化对实时捕捉目标造成的不良影响进行补偿,使摄像机对目标的凝视更稳定、更准确.最后,通过仿真实验验证该云台控制方法的有效性.  相似文献   

9.
Compared with a single platform, cooperative autonomous unmanned aerial vehicles (UAVs) offer efficiency and robustness in performing complex tasks. Focusing on ground mobile targets that intermittently emit radio frequency signals, this paper presents a decentralized control architecture for multiple UAVs, equipped only with rudimentary sensors, to search, detect, and locate targets over large areas. The proposed architecture has in its core a decision logic which governs the state of operation for each UAV based on sensor readings and communicated data. To support the findings, extensive simulation results are presented, focusing primarily on two success measures that the UAVs seek to minimize: overall time to search for a group of targets and the final target localization error achieved. The results of the simulations have provided support for hardware flight tests.   相似文献   

10.
Manipulating objects using arms mounted to unmanned aerial vehicles (UAVs) is attractive because UAVs may access many locations that are otherwise inaccessible to other mobile manipulation platforms such as ground vehicles. Despite recent work, several major challenges remain to be overcome before it will be practical to manipulate objects from UAVs. Among these challenges are: (a) The constantly moving UAV platform and compliance of manipulator arms make it difficult to position the UAV and end-effector relative to an object of interest precisely enough for manipulation, and (b) The motions of the manipulator impact the stability of the host UAV, further complicating positioning. Solving these challenges will bring UAVs one step closer to being able to perform meaningful tasks such as infrastructure repair, disaster response, casualty extraction, and cargo resupply. Toward solutions to these challenges, this paper describes a hyper-redundant manipulator, manipulator control approaches and system design considerations to position the manipulator relative to objects of interest in such a way that impacts on platform stability are minimized.  相似文献   

11.
针对大量在空中无秩序飞行的无人机有可能会闯入飞机场等禁飞区的情况,为了避免发生空中交通安全事故,提出了一种无人机禁飞区预警算法。首先,该算法经过坐标变换将描述无人机位置点的GPS坐标转换成对应的平面坐标;接着,采用改进的最小二乘曲线拟合算法预测出无人机的飞行轨迹;然后,通过计算预测的飞行轨迹曲线在当前点的切线是否会与描述禁飞区的电子围栏相交,来判断无人机是否会进入禁飞区。同时,所有的无人机都会安装上飞行数据记录模块,来实时地为该算法提供无人机的飞行状态信息。最后,通过MATLAB仿真实验验证了该预警算法的可行性和有效性,表明该算法可以对禁飞区周围的无人机进行预警。  相似文献   

12.
The use of Unmanned Aerial Vehicles (UAVs) is growing significantly for many and varied purposes. During the mission, an outdoor UAV is guided by following the planned path using GPS signals. However, the GPS capability may become defective or the environment may be GPS-denied, and an additional safety aid is therefore required for the automatic landing phase that is independent of GPS data. Most UAVs are equipped with machine vision systems which, together with onboard analysis, can be used for safe, automatic landing. This contributes greatly to the overall success of autonomous flight.This paper proposes an automatic expert system, based on image segmentation procedures, that assists safe landing through recognition and relative orientation of the UAV and platform. The proposed expert system exploits the human experience that has been incorporated into the machine vision system, which is mapped into the proposed image processing modules. The result is an improved reliability capability that could be incorporated into any UAV, and is especially robust for rotary wing UAVs. This is clearly a desirable fail-safe capability.  相似文献   

13.
基于北斗导航系统的无人机飞行监管系统设计   总被引:1,自引:0,他引:1  
针对无人机空中管理存在的问题,研究开发一种由基于北斗定位的机载监测终端和飞行监管中心构成的无人机飞行监管系统.终端以低成本高可靠的STM32F407为控制单元,采用UM220北斗接收机获取无人机的状态信息,通过GPRS移动通信方式把状态信息回传到监管中心平台.在Visual Studio2010平台上以Visual Basic.NET语言开发监管中心平台,通过调用百度地图API,实现无人机的实时飞行监控,并将回传信息存入MySQL数据库.对利用北斗卫星导航系统实现无人机的监管具有一定的参考价值.  相似文献   

14.
This paper treats the question of formationflight control of multiple unmanned aerial vehicles (UAVs). Inclose formation the wing UAV motion is affected by the vortexof the adjacent lead aircraft. The forces produced by these vorticesare complex functions of the relative position coordinates ofthe UAVs. In this paper, these forces are treated as unknownfunctions. For simplicity, it is assumed that the UAVs have autopilotsfor heading-, altitude-, and Mach-hold in the inner loops. Anadaptive control law is derived for the position control of thewing aircraft based on a backstepping design technique. In theclosed-loop system, commanded separation trajectories are asymptoticallytracked by each wing aircraft while the lead UAV is maneuvering.It is seen that an overparametrization in the design is essentialfor the decentralization of the control system. These resultsare applied to formation flight control of two UAVs and simulationresults are obtained. These results show that the wing UAV followsprecisely the reference separation trajectories in spite of theuncertainties in the aerodynamic coefficients, while the leadaircraft maneuvers.  相似文献   

15.
It is undoubted that the latest trend in the unmanned aerial vehicles (UAVs) community is towards visionbased unmanned small-scale helicopter, utilizing the maneuvering capabilities of the helicopter and the rich information of visual sensors, in order to arrive at a versatile platform for a variety of applications such as navigation, surveillance, tracking, etc. In this paper, we present the development of a visionbased ground target detection and tracking system for a small UAV helicopter. More specifically, we propose a real-time vision algorithm, based on moment invariants and two-stage pattern recognition, to achieve automatic ground target detection. In the proposed algorithm, the key geometry features of the target are extracted to detect and identify the target. Simultaneously, a Kalman filter is used to estimate and predict the position of the target, referred to as dynamic features, based on its motion model. These dynamic features are then combined with geometry features to identify the target in the second-stage of pattern recognition, when geometry features of the target change significantly due to noise and disturbance in the environment. Once the target is identified, an automatic control scheme is utilized to control the pan/tilt visual mechanism mounted on the helicopter such that the identified target is to be tracked at the center of the captured images. Experimental results based on images captured by the small-scale unmanned helicopter, SheLion, in actual flight tests demonstrate the effectiveness and robustness of the overall system.  相似文献   

16.
无人机软式自主空中加油视觉导航方法   总被引:1,自引:0,他引:1  
针对无人机软式自主空中加油问题,提出了用于无人机软式自主空中加油的视觉导航方法.在加油锥套外环平面上均匀布置8个近红外LED,在受油机上布置CCD相机及带通滤镜构成视觉系统,利用该系统对锥套进行近红外成像,对所获取的近红外图像进行特征点提取并利用迭代算法估计锥套与受油机之间的位姿参数.在不同距离下对该视觉导航方法进行了仿真验证.结果表明,所研究的无人机软式自主空中加油视觉导航方法精度较高,抗干扰能力较强,可以有效地用于无人机软式自主空中加油.  相似文献   

17.
This paper presents the control of an indoor unmanned aerial vehicle (UAV) using multi-camera visual feedback. For the autonomous flight of the indoor UAV, instead of using onboard sensor information, visual feedback concept is employed by the development of an indoor flight test-bed. The indoor test-bed consists of four major components: the multi-camera system, ground computer, onboard color marker set, and quad-rotor UAV. Since the onboard markers are attached to the pre-defined location, position and attitude of the UAV can be estimated by marker detection algorithm and triangulation method. Additionally, this study introduces a filter algorithm to obtain the full 6-degree of freedom (DOF) pose estimation including velocities and angular rates. The filter algorithm also enhances the performance of the vision system by making up for the weakness of low cost cameras such as poor resolution and large noise. Moreover, for the pose estimation of multiple vehicles, data association algorithm using the geometric relation between cameras is proposed in this paper. The control system is designed based on the classical proportional-integral-derivative (PID) control, which uses the position, velocity and attitude from the vision system and the angular rate from the rate gyro sensor. This paper concludes with both ground and flight test results illustrating the performance and properties of the proposed indoor flight test-bed and the control system using the multi-camera visual feedback.  相似文献   

18.
针对小型无人飞行器跟踪目标的问题,提出了一种基于双目视觉和Camshift算法的无人飞行器目标跟踪以及定位算法。双目相机得到的左右图像通过Camshift算法处理可得到目标中心特征点,对目标中心特征点进行三维重建,得到机体坐标系下无人飞行器与目标间的相对位置和偏航角,应用卡尔曼滤波算法对测量值进行了优化,将所得估计值作为飞行控制系统的反馈输入值,实现了无人飞行器自主跟踪飞行。结果表明所提算法误差较小,具有较高的稳定性与精确性。  相似文献   

19.
Low cost UAVs are becoming more and more popular in both research and practical applications, and it leads to a new, potentially significant service product known as UAV-based personal remote sensing (PRS). Multi-UAV system with advanced cooperative control algorithms has advantages over single UAV system, especially in time urgent tasks such as detecting nuclear radiation before deploying the salvage. This paper considers two scenarios for nuclear radiation detection using multiple UAVs, of which contour mapping of the nuclear radiation is simulated. Then, for real applications, this paper presents a low-cost UAV platform with built-in formation flight control architecture together with a formulated standard flight test routine. Three experimental formation flight scenarios that imitate the nuclear detection missions are prepared for contour mapping of nuclear radiation field in 3D space.  相似文献   

20.

This paper proposes a novel complete navigation system for autonomous flight of small unmanned aerial vehicles (UAVs) in GPS-denied environments. The hardware platform used to test the proposed algorithm is a small, custom-built UAV platform equipped with an onboard computer, RGB-D camera, 2D light detection and ranging (LiDAR), and altimeter. The error-state Kalman filter (ESKF) based on the dynamic model for low-cost IMU-driven systems is proposed, and visual odometry from the RGB-D camera and height measurement from the altimeter are fed into the measurement update process of the ESKF. The pose output of the ESKF is then integrated into the open-source simultaneous location and mapping (SLAM) algorithm for pose-graph optimization and loop closing. In addition, the computationally efficient collision-free path planning algorithm is proposed and verified through simulations. The software modules run onboard in real time with limited onboard computational capability. The indoor flight experiment demonstrates that the proposed system for small UAVs with low-cost devices can navigate without collision in fully autonomous missions while establishing accurate surrounding maps.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号