首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 796 毫秒
1.
在空气阴极、单室、无膜液固厌氧流化床微生物燃料电池(AFBMFC)中,以污水和椰壳活性炭为液相和固相,分别以亚甲基蓝(MB)、中性红(NR)及铁氰化钾为电子介体,考察电子介体的种类和浓度对厌氧流化床微生物燃料电池产电性能的影响.实验结果表明,亚甲基篮可以提高AFBMFC产电量,但增加幅度较小;添加铁氰化钾后,电池正负极...  相似文献   

2.
微生物燃料电池作为新型微生物传感器,既能降解水中污染物也可以通过微生物产电输出电能。通常将污染物降解效率和产电功率作为衡量燃料电池性能好坏的重要参数,反应器构型是影响微生物燃料电池产电性能与降解效果的关键。归纳了光电极微生物燃料电池、自分层微生物燃料电池和人工湿地-微生物燃料电池这3种构型的反应器机理及对废水的适用性,总结了电极材料、电子介体、分隔膜材料等因素对燃料电池产电性能影响的研究进展。  相似文献   

3.
微生物燃料电池(MFCs)的启动及产电性能直接影响其应用于对实际废水的处理。以屠宰厂废水为基质研究了循环伏安扫描对单室空气阴极微生物燃料电池启动和产电性能的影响。结果表明:经过24 h CV扫描的MFCs其启动时间比常规电阻(1000 Ω)直接启动的MFCs缩短了71.4%(从420 h缩短至120 h),MFCs最大功率密度提高了21.5%,达到37.8 W·m-3。通过电极生物量测定和生物膜表面形貌观察发现,经CV扫描的阳极生物量显著提高且生物膜的产电菌占优势是MFCs性能提高的主要原因。说明CV扫描不断促进产电菌在阳极表面的吸附,而且增加产电微生物的生长速度。这一技术为发展MFCs的快速启动和提升MFCs的产电性能提供了新思路。  相似文献   

4.
研究微生物燃料电池在几种不同阴极液和曝气条件下处理餐饮废水及同步发电的性能。分别对以NaCl、K_3[Fe(CN)_6]和Na Cl+K_3[Fe(CN)_6]三种溶液为阴极液的微生物燃料电池进行了实验运行,对比分析了其产电性能和净水效果;对阴极室曝气和自然复氧两种条件下微生物燃料电池整体性能进行了对比研究。实验结果表明,阴极液和曝气条件的变化会影响微生物燃料电池的发电性能和净水效果。在以NaCl+K_3[Fe(CN)_6]混合液为阴极液且阴极室曝气的条件下,以餐饮废水为底物的微生物燃料电池的废水处理效果和产电能力最佳,相应的食堂原废水的产电电流密度稳态值为8.7m A·m~(-2),COD去除率为46.2%;模拟废水的产电电流密度稳态值为6.84 mA·m~(-2),COD去除率为33.1%。选择合适的阴极液和曝气状态,微生物燃料电池可有效处理餐饮废水并取得良好的发电性能。  相似文献   

5.
利用小球藻构建微生物燃料电池   总被引:8,自引:0,他引:8  
利用分离的小球藻(Chlorella vulgaris)构建了光合微生物燃料电池,考察了小球藻加入阴阳极和以废水为底物的电池产电性能及机理. 结果表明,构建的微生物燃料电池是可行的,电能输出主要依赖吸附在电极表面的藻,而与悬浮在溶液中的藻基本无关. 光照是该燃料电池电压变化的主要影响因素之一. 在阴极室中添加铁离子,通过其二和三价间的循环转化,提高电子的传递速率,加快质子和氧气的反应,电池的输出功率密度达到11.82 mW/m2,COD去除率达到40%. 这种电池将化学能、光能转化为电能的同时可处理污水并回收小球藻.  相似文献   

6.
直接微生物燃料电池的构建及初步研究   总被引:16,自引:6,他引:10  
利用Geobacter metallireducens能够以Fe(OH)3固体作电子受体进行呼吸的特性,用其构建直接微生物燃料电池,初步考察了产电情况和产电原理. 实验证明,Geobacter metallireducens直接微生物燃料电池的电能产出主要依赖于吸附在电极上的细菌. 燃料醋酸钠可以完全氧化至CO2,反应结束后其浓度低于检测下限(<10 mmol/L). 电子回收率达80%,电流密度达704.4 mA/m2.  相似文献   

7.
微生物燃料电池处理含铬废水并同步产电   总被引:3,自引:1,他引:2  
以葡萄糖为阳极燃料、含铬废水为阴极液,碳毡为阳极、石墨板为阴极构建了双室微生物燃料电池,考察了阳极条件(底物浓度)及阴极条件(pH、初始六价铬浓度)对含铬废水的降解及MFC的产电性能的影响.结果表明低阴极液pH和高初始Cr(Ⅵ)浓度能改善MFC产电性能.当pH=2、初始六价铬浓度为177 mg/L、反应时间为10 h时,最大输出功率为108 mW/m~2,六价铬去除率为92.8%.阳极底物浓度对微生物燃料电池的性能也有影响.在微生物燃料电池中,阴极极化较小,表明该燃料电池有稳定的性能,微生物燃料电池对含铬废水的处理有应用潜力并能同步产电.  相似文献   

8.
阳极双电层电容对微生物燃料电池性能的影响   总被引:2,自引:2,他引:0       下载免费PDF全文
叶遥立  郭剑  潘彬  成少安 《化工学报》2015,66(2):773-778
采用3种活性炭粉制备具有不同电容的阳极,研究了双电层电容阳极对单室空气阴极微生物燃料电池启动、运行、性能、阳极生物膜附着的影响。结果表明:当电极表面积相近的情况下,阳极双电层电容从0.0012 F增加到22.72 F时,微生物燃料电池启动时间缩短了68.0%,电池的最大功率密度增加了16.8倍,达到546.1 m W·m-2。扫描电子显微镜的结果表明高电容的阳极表面附着的微生物量比低电容电极的高1倍。因此,微生物燃料电池性能受阳极双电层电容的影响,而与阳极表面积的相关性小。  相似文献   

9.
微生物燃料电池(MFCs)的启动及产电性能直接影响其应用于对实际废水的处理。以屠宰厂废水为基质研究了循环伏安扫描对单室空气阴极微生物燃料电池启动和产电性能的影响。结果表明:经过24 h CV扫描的MFCs其启动时间比常规电阻(1000?)直接启动的MFCs缩短了71.4%(从420 h缩短至120 h),MFCs最大功率密度提高了21.5%,达到37.8 W·m~(-3)。通过电极生物量测定和生物膜表面形貌观察发现,经CV扫描的阳极生物量显著提高且生物膜的产电菌占优势是MFCs性能提高的主要原因。说明CV扫描不断促进产电菌在阳极表面的吸附,而且增加产电微生物的生长速度。这一技术为发展MFCs的快速启动和提升MFCs的产电性能提供了新思路。  相似文献   

10.
微生物燃料电池的研究进展与展望   总被引:2,自引:0,他引:2  
微生物燃料电池(MFCs)作为一种新型的环境生物技术,因其能很好地将有机污染物处理和能源制备结合在一起而引起各国学者的广泛关注和研究。作者介绍了微生物燃料电池的工作原理,系统地从微生物、底物、电活性介体、电极构造、质子交换膜和反应器设计等方面阐述了微生物燃料电池的研究现状。针对微生物燃料电池今后的发展和规模化应用,提出了4个研究方向:新型阴极氧化剂的研制、MFCs过程模拟、厌氧-MFCs耦合、多个MFCs电池组性能。  相似文献   

11.
以聚苯胺和硝酸盐为前驱体,采用热处理法制备了M-N-C(M=Fe,Co)材料,并将其作为厌氧流化床微生物燃料电池(AFBMFC)阴极催化剂。通过X射线衍射(XRD)、红外光谱(FTIR)、扫描电子显微镜(SEM)对催化剂进行晶型结构和表面形貌的表征。采用循环伏安法(CV)对催化剂的电化学性能进行考察,并应用于AFBMFC,考察了其对电池产电性能的影响。结果表明,使用Fe-N-C催化剂的微生物燃料电池稳定运行时,开路电压达到636.0 mV,功率密度达到166.82 mW·m-2,比使用Pt/C催化剂的微生物燃料电池的功率密度提高10%。表明Fe-N-C催化剂用做微生物燃料电池阴极催化剂具有潜在的应用前景。  相似文献   

12.
A complete microbial fuel cell (MFC) operating under continuous flow conditions and using Chlorella vulgaris at the cathode and Saccharomyces cerevisiae at the anode was investigated for the production of electricity. The MFC was loaded with different resistances to characterise its power capabilities and voltage dynamics. A cell recycle system was also introduced to the cathode to observe the effect of microalgae cell density on steady‐state power production and dynamic voltage profiles. At the maximum microalgae cell density of 2140 mg/L, a maximum power level of 0.6 mW/m2 of electrode surface area was achieved. The voltage difference between the cathode and anode decreased as the resistance decreased within the closed circuit, with a maximum open circuit voltage (infinite resistance) of 220 mV. The highest current flow of 1.0 mA/m2 of electrode surface area was achieved at an applied resistance of 250 Ω.  相似文献   

13.
以厌氧活性污泥为阳极菌种,乙酸钠为阳极底物,硫酸铜和重铬酸钾溶液为微生物燃料电池(MFC)阴极液,人工模拟含镉重金属废水为微生物电解池(MEC)阴极液,构建MFC-MEC耦合系统,利用MFC的产电驱动MEC运行,在不消耗外部能源的情况下,实现含镉重金属废水中Cd2+的去除。实验研究了MFC反应器容积、MFC堆栈、MEC电极材料、MEC阴极液pH对MFC-MEC耦合系统电性能及含镉重金属废水处理效果的影响。结果表明:MFC反应容积的扩大可以提高其产电性能,但与此同时会造成MFC的内阻升高,随着MFC容积的增加,MEC中Cd2+去除率逐渐增加,但同时MFC阴极Cr6+去除率逐渐下降;MFC堆栈可以提高工作组两端电压,串联时最大输出电压为1509 mV,Cd2+去除率为69.3%;以钛板作为MEC电极时,微生物能有效附着在阳极表面,MFC阳极COD去除率为85%,MEC中Cd2+去除率为51.5%;MEC阴极液pH在3~5时,有利于含镉重金属废水的处理,Cd2+去除率80%以上。经XRD分析,MEC阴极还原产物为CdCO3。  相似文献   

14.
自呼吸式直接甲醇燃料电池性能及其传质特性   总被引:1,自引:1,他引:0  
针对有效面积为1 cm2的自呼吸式直接甲醇燃料电池(direct methanol fuel cell,DMFC)单电池,阳极采用燃料罐供液,将阴极侧集流体和夹具设计为一体式结构,并用自制的七合一膜电极组件对其进行测试,讨论了催化剂类型、扩散层材料、集流体结构等因素对其性能的影响,分析了电池内部的传质特性,优化了电池特别是其在中高电流密度条件下的性能。实验结果表明:采用Pt黑、Pt-Ru黑催化剂制作的自呼吸式DMFC能强化反应物的传质;采用碳布制作的膜电极更倾向于获得更高的极限电流密度;低电流密度时,因甲醇渗透电池电压随着甲醇浓度的增加而降低,但在中高电流密度下,电池性能随甲醇浓度的增大先升高后降低;平行集流体有利于阴阳极生成物的排出和反应物的传质,因此易获得较高的电池性能。  相似文献   

15.
使用单室空气阴极微生物电池处理焦化废水,以电压、电流密度、功率密度、COD去除率、p H为考察指标,分别用铂、四氧化三铁、二氧化锰作阴极,对比其去除效率和产电能力。实验结果表明,铂阴极的产电能力和废水处理效果最好,开路电压最大值达到521.469 m V。当电流密度为2.4 A/m2时功率密度达到最大值0.195 W/m2,COD去除率为82.9%;二氧化锰阴极MFC效果次之,四氧化三铁阴极MFC的效果最差。  相似文献   

16.
以单室空气阴极微生物燃料电池(MFC)为反应器,考察了以加热预处理污泥上清液为底物的MFC产电情况. 结果表明,污泥90℃下加热3 h时MFC输出功率最高(44.4 mW/m2),是未加热的105倍. 在此预处理条件下,污泥上清液中所含有机物成分最有利于阳极微生物的代谢产电. 加热后的污泥再次加热作为MFC底物产电,输出功率只有5.8 mW/m2. 加热预处理可提高以污泥上清液为底物的MFC的输出功率,且易与现有工艺结合,更接近实际应用.  相似文献   

17.
To improve cathodic efficiency and sustainability of microbial fuel cell (MFC), graphite fibre brush (GFB) was examined as cathode material for power production in biocatalysed‐cathode MFC. Following 133‐h mixed culturing of electricity‐producing bacteria, the MFC could generate a reproducible voltage of 0.4 V at external resistance (REX) of 100 Ω. Maximum volumetric power density of 68.4 W m–3 was obtained at a current density of 178.6 A m–3. Upon aerobic inoculation of electrochemically active bacteria, charge transfer resistance of the cathode was decreased from 188 to 17 Ω as indicated by electrochemical impedance spectroscopy (EIS) analysis. Comparing investigations of different cathode materials demonstrated that biocatalysed GFB had better performance in terms of half‐cell polarisation, power and Coulombic efficiency (CE) over other tested materials. Additionally, pH deviation of electrolyte in anode and cathode was also observed. This study provides a demonstration of GFB used as biocathode material in MFC for more efficient and sustainable electricity recovery from organic substances.  相似文献   

18.
Electricity generation using a microbial fuel cell (MFC) was investigated with acetate as the fuel and Geobacter sulfurreducens as the biocatalyst on the anode electrode. The voltage and power density behaviors at various external resistances were observed, as were the coulombic efficiency and energy recovery behaviors at various acetate concentrations. A high voltage production was obtained when the pH in the cathode chamber was maintained in the range of 7–8, which is similar to that used in other MFC studies. After 72 hours of operation, the voltage production was decreased by 11.5% with 30 mM tris-HCl and by 33.7% with 10 mM tris-HCl.  相似文献   

19.
Microbial fuel cells (MFCs) represent a novel technology for wastewater treatment with electricity production. Electricity generation with simultaneous nitrate reduction in a single-chamber MFC without air cathode was studied, using glucose (1 mM) as the carbon source and nitrate (1 mM) as the final electron acceptor employed by Bacillus subtilis under anaerobic conditions. Increasing current as a function of decreased nitrate concentration and an increase in biomass were observed with a maximum current of 0.4 mA obtained at an external resistance (R(ext)) of 1 KΩ without a platinum catalyst of air cathode. A decreased current with complete nitrate reduction, with further recovery of the current immediately after nitrate addition, indicated the dependence of B. subtilis on nitrate as an electron acceptor to efficiently produce electricity. A power density of 0.0019 mW/cm(2) was achieved at an R(ext) of 220 Ω. Cyclic voltammograms (CV) showed direct electron transfer with the involvement of mediators in the MFC. The low coulombic efficiency (CE) of 11% was mainly attributed to glucose fermentation. These results demonstrated that electricity generation is possible from wastewater containing nitrate, and this represents an alternative technology for the cost-effective and environmentally benign treatment of wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号